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a b s t r a c t

We report the existence and stability of two-dimensional (2D) fundamental, dipole-mode, vortex, and
multipole solitons in parity-time (PT) symmetric triangular lattices with the Kerr self-focusing
nonlinearity. It is demonstrated that the structure of such complex lattice potentials strongly affects
the shape of the solitons, enabling the formation of stable out-of-phase dipole and multipole solitons, as
well as vortices. The solitons of all these species have their stability regions in the semi-infinite gap. We
also identify the point of the PT-symmetry-breaking phase transition in this lattice.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The fact non-Hermitian Hamiltonians subjecting to the
PT-symmetry may have entirely real spectra of eigenvalues was
first demonstrated by Bender and Boettcher [1]. Then, the concept
of the PT symmetry was introduced into optics [2]. Many works
have been addressed Hamiltonians with pseudo-Hermitian (com-
plex) potentials in diverse physical settings [3–5]. The simplest
physical system with the PT-symmetric complex-valued potential
is composed of two coupled optical waveguides, with equal
amounts of linear gain and loss carried by them [4]. Increasing
the strength of the gain and loss components of PT-symmetric
potential past a critical value breaks the PT symmetry [6]. The
corresponding transition (bifurcation) has been studied in detail,
both theoretically and experimentally [2–7].

Localized nonlinear modes (solitons) exist in both one-
dimensional (1D) and two-dimensional (2D) photonic lattices with
the PT-symmetry, which has been established recently [8–21].
Photonic lattices combined with the linear [8–17], nonlinear
[18,19] or mixed linear-nonlinear PT symmetry [20–23] support
diverse families of bright solitons. PT-symmetric nonlinear lattices
can also enable the formation of solitons, some narrowmodes being
stable even when the conservative nonlinear lattice potential is

absent [18]. Stability of solitons in such PT-symmetric potentials
was analyzed too [19]. The existence and stability of solitons
supported by defects in PT-symmetric lattices in local [13] and
nonlocal [14] nonlinear media were also reported. In defocusing
Kerr media with embedded photonic lattices, stable in-phase multi-
peak gap solitons were reported in 1D [15] and 2D [16] settings.
Very recently, vector solitons in PT-symmetric lattices were studied,
too [17].

Hexagonal and triangular lattices are viewed as basic structures
in many physical systems, especially in photonic band-gap crystals
[24]. Gap solitons in triangular photonic lattices originated from
the first and second band of the linear transmission spectrum have
been observed, see Refs. [25,26]. The structure of the triangular
photonic lattices affects the formation of fundamental and dipole
solitons [27]. Solitons in triangular photonic lattices with defects
and saturable nonlinearity have been reported as well. It was
found that, with the changes of the defect strength, solitons may
exist in different bandgaps [28]. Higher-order solitons were
studied too, with the conclusion that dipoles, necklaces, and
necklace-vortex solitons have their stability regions in lattices
with the three-fold symmetry [29].

In this paper we investigate the existence and stability of funda-
mental, dipole-mode, vortex, and multipole solitons in 2D triangular
lattices with the PT symmetry based on focusing Kerr nonlinearity. In
particular, we consider the effect of the distance between the two
peaks of the dipole soliton on its stability. Stable 3-peak vortices and
out-of-phase quadrupoles and 6-poles are presented too.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

http://dx.doi.org/10.1016/j.optcom.2014.09.034
0030-4018/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: phhwang@scut.edu.cn (H. Wang).

Optics Communications 335 (2015) 146–152

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2014.09.034
http://dx.doi.org/10.1016/j.optcom.2014.09.034
http://dx.doi.org/10.1016/j.optcom.2014.09.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.09.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.09.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2014.09.034&domain=pdf
mailto:phhwang@scut.edu.cn
http://dx.doi.org/10.1016/j.optcom.2014.09.034


2. PT-symmetric triangular lattice and the Bloch bandgap

The propagation of the probe beam in the 2D PT-symmetric
triangular photonic lattices with the focusing Kerr nonlinearity is
governed by the nonlinear Schrödinger equation [10]:
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here Vðx; yÞ ¼ Rðx; yÞþ iIðx; yÞ is the complex-valued potential, U(x,
y, z) is the slowly varying amplitude of the (extraordinarily
polarized) probe beam, (x, y) are the transverse coordinates, and
z is the propagation distance.

In what follows, the real part R(x, y) of the PT-symmetric linear
photonic lattices is adopted in the form of
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and the imaginary part of the PT-symmetric potential is
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here k0 ¼ 2π=d, with lattice spacing d, while V0 and W0 are the
modulation depths of the conservative and dissipative lattices,
respectively. To present generic results, we choose, as appropriate
values, V0¼2/3, W0¼0.2, and d¼π. Figs. 1(a) and (b) show the real
and imaginary parts of the PT-symmetric triangular potential,
respectively. In the experiment, it is possible to optically induce
a 2D triangular lattice, e.g., in a biased photorefractive crystal
SBN:60 (a strontium barium niobate crystal) by means of three
coherently interfering ordinarily polarized broad laser beams, that
may be produced by the frequency-doubled Nd:YVO4 cw laser
[27,29].

As mentioned above, there is a “phase transition” point in such
PT-symmetric systems. The continuous spectrum in this case
contains Bloch bands filled by delocalized modes in the form of
Uðx; y; zÞ ¼ uðx; yÞeiμzeiðkxxþkyyÞ, where kx and ky are the Bloch wave
numbers in the first Brillouin zone, μ is the propagation constant
and, uðx; yÞ is a periodic function with the same period as the
underlying lattice. Substituting U(x, y, z) into the linear version of

Eq. (3), one obtains the corresponding eigenvalue equation for μ:
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This equation can be solved by means of the plane-wave-
expansion method. Spectrum μðkÞ of the linear Bloch waves for
W0¼0.2 has the band structure shown in Fig. 1(c), where the
Γ-point is the center of the Brillouin zone, whereas the M-point
and X-point are the band edges. It is known that the first and
second Bloch band merge together when W0 approaches the
PT-symmetry-breaking (phase-transition) point, at which complex
eigenvalues μ emerge, although when the PT-symmetry condition
V(x, y)¼Vn(�x,�y) still holds. The phase transition point of the
present PT-symmetric triangular lattice is at W0¼1, which is
different from the PT-symmetric square lattices, where it is at
W0¼0.5 [10]. The first bandgap is 0:17rμr1:8, while the semi-
infinite gap is μZ2:57.

3. Fundamental solitons

We search for soliton solutions of Eq. (3) in the form of
Uðx; y; zÞ ¼ uðx; yÞeiμz , where μ is a real propagation constant and

Fig. 1. (a) The real and (b) the imaginary parts of the refractive-index modulation
in the PT-symmetric triangular photonic lattice. (c) The bandgap structure of the
triangular lattice with the PT-symmetry for the strength of the imaginary part of
potential (2) W0¼0.2. (d) The irreducible Brillouin zone.

Fig. 2. Profiles of fundamental solitons. (a) and (b): The real and imaginary parts
for μ¼2.61. (c) and (d): the same for μ¼5.0.

Fig. 3. (a) The power of fundamental solitons versus the propagation constant
(black shaded regions are Bloch bands). Solid and dashed segments denote stable
and unstable subfamilies, respectively. (b) The transverse distribution of the local
power-flux vector in the fundamental PT-symmetric soliton solution
for μ¼6, the contours representing the distribution of the absolute value of the
field, |u(x,y)|.
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