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a b s t r a c t

We analyze pattern-formation scenarios in the two-dimensional (2D) complex Ginzburg–Landau (CGL)
equation with the cubic–quintic (CQ) nonlinearity and a cellular potential. The equation models laser
cavities with built-in gratings, which stabilize 2D patterns. The pattern-building process is initiated by
kicking a compound mode, in the form of a dipole, quadrupole, or vortex which is composed of four local
peaks. The hopping motion of the kicked mode through the cellular structure leads to the generation of
various extended patterns pinned by the structure. In the ring-shaped system, the persisting freely
moving dipole hits the stationary pattern from the opposite side, giving rise to several dynamical
regimes, including periodic elastic collisions, i.e., persistent cycles of elastic collisions between the
moving and quiescent dissipative solitons, and transient regimes featuring several collisions which end
up by absorption of one soliton by the other. Still another noteworthy result is the transformation of a
strongly kicked unstable vortex into a stably moving four-peaked cluster.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental principle behind the creation of dissipative
solitons is that their stability relies upon the simultaneous balance
of conservative and dissipative ingredients in the underlying
system [1]. These are the diffraction and self-focusing nonlinearity
in the conservative part of the system, and the linear and non-
linear loss and gain terms in the dissipative part. Well-known
physical realizations of such systems are offered by lasing [2,3] and
plasmonic [4] cavities, the respective models being based on the
complex Ginzburg–Landau (CGL) equations with the cubic–quintic
(CQ) set of gain and loss terms, combined with the background
linear loss [3]. This combination is well known to maintain stable
localized modes [5]. The CGL equations constitute a generic class
of dissipative pattern-formation models [6], which find many
other applications, including bosonic condensates of quasi-
particles in solid-state media [7], reaction–diffusion systems [8],
and superconductivity [9].

Originally, the CGL equation of the CQ type was introduced [5]
as a model for the creation of stable two-dimensional (2D)

localized modes. Following this work, similar models were derived
or proposed as phenomenological ones in various settings. Many
1D and 2D localized states, i.e., dissipative solitons, have been
found as solutions of such equations [10–15].

An essential ingredient of advanced laser cavities is a trans-
verse periodic grating, which can be fabricated by means of
available technologies [16]. In addition to the permanent gratings,
virtual photonic lattices may be induced in photorefractive crystals
as interference patterns by pairs of pump beams with the ordinary
polarization, which illuminate the crystal along the axes x and y,
while the probe beam with the extraordinary polarization is
launched along z [17]. A 2D cavity model with the grating was
introduced in Ref. [18]. It is based on the CQ-CGL equation
including the cellular (lattice) potential, which represents the
grating. In fact, the laser cavity equipped with the grating may
be considered as a photonic crystal built in the active medium.
Periodic potentials also occur in models of passive optical systems,
which are driven by external beams and operate in the temporal
domain, unlike the active systems which act in the spatial domain
[19–21].

Localized vortices, alias vortex solitons, are an important
species of self-trapped modes in 2D settings. In uniform media,
dissipative vortex solitons cannot be stable without the presence
of a diffusion term, in the framework of the CGL equation (see, e.g.,
Ref. [12]). However, this term is absent in models of waveguiding
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systems (it may sometimes be present in temporal-domain optical
models [22]). Compound vortices, built as complexes of four peaks
pinned to the lattice potential, may be stable in models including
the grating in the absence of the diffusion [18]. Using this
possibility, stable 2D [23] and 3D [24] vortical solitons have been
found in the framework of CGL equations including trapping
potentials.

In a majority of previous works, the studies of various 2D
localized patterns have been focused on their stabilization by
means of the lattice potentials. Another relevant issue is the
mobility of 2D dissipative solitons in the presence of the under-
lying lattice (dissipative solitons may move without friction only if
the diffusion term is absent, therefore the mobility is a relevant
issue for the diffusion-free models of laser cavities). Localized
modes can be set in motion by the application of a kick to them,
which, in the context of the laser-cavity models, implies launching
a tilted beam into the system. Recently, the mobility of kicked 2D
fundamental solitons in the CQ-CGL equation with the cellular
potential was studied in Ref. [25]. It has been demonstrated that
the kicked soliton, hopping through the periodic structure, leaves
in its wake various patterns in the form of single- or multi-peak
states trapped by the periodic potential. In the case of periodic
boundary conditions (b.c.), which correspond to an annular
system, the free soliton completes the round trip and hits the
pattern that it has originally created. Depending on parameters,
the free soliton may be absorbed by the pinned mode (immedi-
ately, or after several – up to five – cycles of quasi-elastic
collisions), or the result may be a regime of periodic elastic
collisions, which features periodic cycles of passage of the moving
soliton through the quiescent one.

A natural extension of the analysis performed in Ref. [25] is the
study of the mobility of kicked soliton complexes, such as dipoles,
quadrupoles, and compound vortices, and various scenarios of the
dynamical pattern formation initiated by such moving complex
modes, in the framework of the 2D CQ-CGL equation with the lattice
potential. This is the subject of the present work. In fact, such
configurations are truly two-dimensional ones, while the dynamical
regimes for kicked fundamental solitons, studied in Ref. [25], actually
represent quasi-1D settings. The model is formulated in Section 2,
which is followed by the presentation of systematic numerical results
for dipoles, quadrupoles, and vortices of two types, onsite- and
offsite-centered ones (alias “rhombuses” and “squares”) in Sections
3, 4, and 5, respectively. The paper is concluded in Section 6.

An essential finding is that the interaction of a freely moving
dipole with pinned patterns, originally created by the same kicked
dipole, gives rise to new outcomes under the periodic b.c. In
particular, the quiescent dipole can be absorbed (cleared) by the
moving one, which may have obvious applications to the design of
all-optical data-processing schemes, where one may need to
install or remove a blocking soliton. Also noteworthy is the
transformation of an unstable vortex by a strong kick into a stable
moving four-soliton cluster.

2. The cubic–quintic complex Ginzburg–Landau model with
the cellular potential

The CQ-CGL equation with a periodic potential is written as

∂u
∂Z

¼ �δþ i
2
∇2

? þðiþϵÞjuj2�ðiνþμÞjuj4þ iVðX;YÞ
� �

u: ð1Þ

It describes the evolution of the amplitude of electromagnetic field
uðX;Y ; ZÞ along propagation direction Z, with transverse Laplacian
∇2

? ¼ ∂2=∂X2þ∂=∂Y2. Parameter δ is the linear-loss coefficient, ϵ is
the cubic gain, μ the quintic loss, and ν the quintic self-defocusing
coefficient (it accounts for the saturation of the Kerr effect if ν40).

The 2D periodic potential with amplitude V0 is taken in the usual
form, VðX;YÞ ¼ V0½ cos ð2XÞþ cos ð2YÞ�, where the normalization of
the field and coordinates is chosen so as to make the normalized
period equal to π, which is always possible. The total power of the
field is also defined as usual:

P ¼∬ juðX;YÞj2 dX dY : ð2Þ
We solved CGL equation (1) by means of the fourth-order

Runge–Kutta algorithm in the Z-direction, and five-point finite-
difference scheme for the computation of the transverse Laplacian
∇2

? . Periodic boundary conditions (b.c.) were used for the study of
kicked dipoles and quadrupoles, and absorbing b.c. for kicked
vortices. In the latter case, the absorbing b.c. are implemented by
adding a surrounding linear-absorption strip to the computation
box. The absorption coefficient varies quadratically with X and Y
from zero at the internal border of the strip to a value large enough
to induce complete absorption of any outgoing pulse, at its
external border. This smooth variation, if the width of the strip
is not too small, allows one to suppress any reflection from the
absorption strip.

Values of coefficients chosen for numerical simulations are
δ¼ 0:4, ϵ¼ 1:85, μ¼ 1, ν¼ 0:1, and V0 ¼ �1. This choice corre-
sponds to a set of parameters for which the initial static config-
urations for the dipoles, quadrupoles, and vortices are stable (in-
phase bound states of two dissipative solitons are also possible,
but, unlike the dipoles, with the phase shift of π between the
bound solitons, they are unstable). The kick is applied to them in
the usual way, by adding the linear phase profile to the initial field:

u0ðX;YÞ-u0ðX;YÞ expðik0 � rÞ; ð3Þ
where r� fX;Yg. The key parameters are length k0 of kick vector
k0, and angle θ which it makes with the X-axis:

k0 ¼ ðk0 cos θ; k0 sin θÞ: ð4Þ
In the laser setup the kick corresponds to a small deviation of

the propagation direction of the beam from the Z-axis. If K0 is the
full wave number and φ is the deviation angle, the length of the
transverse wave vector in physical units is K0 sin φ, which
corresponds to k0 in the normalized form. Below, we investigate
the influence of kick parameters k0 and θ, defined as per Eq. (4), on
a variety of multi-soliton complexes, which are created by moving
dipoles, quadrupoles, or vortices (of both onsite- and offsite-
centered types) in the 2D CGL medium with the cellular potential.

3. The pattern formation by kicked dipoles

3.1. Generation of multi-dipole patterns by a dipole moving in the
transverse direction

In this section we consider the simplest soliton complex in the
form of a stable vertical dipole, which consists of a pair of solitons
aligned along the Y-axis and mutually locked with phase differ-
ence π, which is shown in Fig. 1. The same color code as in Fig. 1
(a) is used in all figures showing amplitude distributions through-
out the paper. First, the dipole is set in motion by the application
of the kick in the horizontal (X) direction (i.e., transverse to the
dipole's axis), as per Eqs. (3) and (4) with θ¼ 0.

As shown in Fig. 2, the moving dipole multiplies into a set of
secondary ones, similar to the outcome of the evolution of the
kicked fundamental soliton [25]. Each newly created dipole
features the fixed phase shift π between two constituent solitons,
and the entire pattern, established as the result of the evolution, is
robust. The particular configuration displayed in Fig. 2 is a chain of
five trapped dipoles, and a free one, which has wrapped up the
motion and reappears from the left edge, moving to the right, due
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