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a b s t r a c t

In this paper, for the first time, chaotic behavior of a classical moving-mirror Fabry–Perot cavity is
obtained by finding numerical solution of a system of delay differential equations (previously obtained
by a phenomenological approach (T. Carmon, M. C. Cross, K. J. Vahala, Phys. Rev. Lett. 98 (2007) 167203)).
Fourier transform of the electromagnetic power for different values of pump power is calculated. By
increasing the power, a period-doubling route to chaos is observed.

Since the quality factor of the cavity has an important role in the chaotic behavior, variation of
Lyapunov exponent and threshold power for the onset of chaos versus quality factor are investigated.
A near linear dependence of the threshold power (measured in miliwatts) to quality factor is obtained. These
results may be exploited in experiments on microresonators to determine the degree and the domain of the
chaotic behavior of the system.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optical microresonators are important devices for being build-
ing blocks for integrated photonic circuits [1] and also for their
potential use in quantum optics applications [2,3]. While their
unprecedented Q-factors make nonlinear processes to occur in
very low thresholds, their small sizes make them suitable for
integrated applications. Also, their ability to store photons for a
long time proposes them as a good candidate for single-photon
quantum optics applications [4,5].

A manifestation of the nonlinear interactions in optical micro-
resonators is their optomechanical interactions. Interaction
between optical field of the cavity and its mechanical structure
forces cavity boundaries to reform and hence to alter optical
power in turn. Thus, energy flows back and forth between optical
and mechanical degrees of freedom. Optomechanical effects in
microresonators have devoted great focus of the scientific com-
munity for their application in developing a laser cooling method
for macroscopic mechanical oscillators [6], their effect on photo-
luminescence intensity and the blinking statistics of nearby
quantum dots [7] and for other applications like RF generators [8].

One of the interesting consequences of nonlinear interactions
in optical microresonators is chaotic behavior of the optical power
stored in or transferred with them. Quantifying this chaotic
behavior is of special importance in the design of devices that

use optical microresonators. As experimentally shown in [9], chaos
is an intrinsic property of the optical microresonators, indepen-
dent of their shapes. So, in all applications involving microreso-
nators, having a good knowledge of chaos becomes an important
issue. On the other hand, photonic implementation of chaos-based
communications for achieving high-bandwidth secure transmis-
sion of data has attracted much attention recently [10–12]. The
basic idea, here, is to encode the messages over chaotic carriers.
Compatibility of this kind of secure communication with commer-
cial fiber-optic systems has recently been shown [13]. Optical
microresonators would also be good candidates for encoding
messages in these communication systems.

Carmon et al had shown that chaotic behavior of the micro-
resonators could be obtained by a set of first order ordinary
differential equations [9]. These equations were obtained using a
phenomenological reasoning. In the present work, by considering
a simple model for microresonators, we discuss the delay differ-
ential equations that govern the dynamics of the optical resonator
(derived from a multi reflection method, devised previously by our
group [14]) and solve them numerically to find the time evolution
of the output optical power and mechanical vibration of the
moving mirror and finally the onset of chaos. Occurrence of chaos
is checked by taking Fourier transform of the optical power and
also by calculating Lyapunov exponent. So, we show that the delay
differential equations demonstrate a complete set of dynamic
regimes (periodic and bistable [14], and chaotic in this work).
Also, the Lyapunov exponent (degree of the chaotic behavior)
variation versus quality factor is investigated. Finally, threshold
power for the onset of chaos is plotted versus cavity quality factor.
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2. Theoretical model

A simplified model for describing the physics of an optical
microresonator is sketched in Fig. 1. An input light with slowly
varying amplitude sðtÞ is coupled into a Fabry–Perot (FP) cavity
through a semi-transparent mirror. Here, we suppose classical
electromagnetic fields and ignore quantum optical effects of the
electromagnetic field such as vacuum enhanced nonlinear absorp-
tion and dispersion, described elsewhere [15,16]. The spring
attached to one of the mirrors simplifies all of the mechanical
degrees of freedom of the microresonator's structure.

The equation of motion for the position of the moving-mirror
relative to the equilibrium point, qðtÞ, is as follows [17]:

m€qþΓm _qþkmq¼ FRP ð1Þ

where m, Γm and km are mass, mechanical damping and spring
constants, respectively. The radiation pressure force is FRP ¼
ε0n2

0δjaðþ Þðz0ðtÞ; tÞj2, where aðþ Þðz0ðtÞ; tÞ is the amplitude of the
right going electric field at the surface of the moving mirror, n0

is the refractive index of the cavity medium and δ is the effective
cross sectional area of light on the mirror and z0ðtÞ ¼ LþqðtÞ. The
amplitude of the right going electric field at the surface of the
moving mirror can be obtained by the standard multi reflection
method as follows [14]:

aðþ Þðz0ðtÞ; tÞ ¼ χ le
� ikL ∑

1

n ¼ 0
Rn
0e

�2ikQnðtÞsðt�ð2nþ1ÞτÞ ð2Þ

where sðtÞ is the envelope of the input beam, χ l is the transition
coefficient of the input mirror and Qn is defined by the following
relation:

QnðtÞ ¼ ∑
n

l ¼ 1
qðt�2lτÞ ð3Þ

τ is the cavity round trip time and R0 is the cavity round
trip complex attenuation for the input frequency ωp, R0 ¼
r1r2e�2αLe�2ikL, which is determined by the input wave number
(k¼ n0ωp=c) and cavity parameters r1, r2 and α (reflection coeffi-
cients of the mirrors and damping coefficient).

3. Numerical method and results

In the case of a FP with fixed mirrors, qðtÞ ¼ 0, for a constant-
amplitude input wave sðtÞ ¼ s0, aðþ ÞðL; tÞ has a simple form. From
Eq. (2) we have

aðþ ÞðL; tÞ ¼ χ ls0e
� ikL ∑

1

n ¼ 0
Rn
0 ¼ χls0e

� ikL 1
1�R0

ð4Þ

Let the mirrors to be fixed for a long time. So our initial
conditions would be as follows:

aðþ ÞðL; tÞ ¼ χ ls0e
� ikL 1

1�R0
for to0 ð5Þ

For one moving mirror FP system shown in Fig. 1, employing
Eq. (2), a recursion relation for aðþ ÞðL; tÞ is obtained

aðþ ÞðL; tÞ ¼ e� ikLe�αLχ lsðt�τÞþR0e�2ikqðt�2τÞaðþ ÞðL; t�2τÞ ð6Þ

Using a step by step calculation method, we go forward in time,
i.e., when aðþ Þð0; tÞ is known, by Eq. (6), the sequence aðþ ÞðL; 2nτÞ
ðn¼ 1; 2; …Þ could be obtained. The values of aðþ ÞðL; tÞ on the
intervals ð2nτ; 2ðn þ 1ÞτÞ are obtained from propagation equa-
tion. So, at each instant of time, from Eq. 6, we find new aðþ ÞðL; tÞ.
Inserting this amount in Eq. 1 gives new qðtÞ.

In summary, the dynamic equations of motion for a constant
input field, introducing the conjugate momentum of the moving
mirror, pðtÞ, into the equations, become as follows:

_qðtÞ ¼ pðtÞ

_pðtÞ ¼ �apðtÞ�bqðtÞþcjaðþ ÞðL; tÞj2 ð7Þ

aðþ ÞðL; tÞ ¼ e� ikLe�αLχ lsðt�τÞþR0e�2ikqðt�2τÞaðþ ÞðL; t�2τÞ

where a¼ 1:4� 106 Hz, b¼ 1:2� 1017 Hz2, c¼ 9779 sec=m, and
k¼ 2π=1:5� 10�6 m�1 are chosen in accordance to Ref. [9]. In this
way, χ l ¼ 0:99, e�αLC1, and jR0jC1. Length of the cavity, L, is
chosen for a typical microresonator, i.e. 3π � 10�6 m:

The system of delay differential Eq. (7) is solved by iteration
using a forth order Runge–Kutta method. Results of time evolution
of the cavity-confined optical power for different input powers are
presented in the left panels of Fig. 2. In the right panels, Fourier
transforms of the corresponding optical powers are shown. The
phase space diagrams are shown in Fig. 3. Also shown in this figure
is the time evolution of natural logarithm of power difference of
two very similar initial conditions.

As is evident, for input power equal to 28.7 mW, a transition to
chaotic regime occurs. The behavior is consistent with bifurcation
analysis: increasing of the input power causes a transition from a
stable-mode operation to periodic, two-periodic and finally chao-
tic dynamics.

So far, the important result is that chaotic behavior of the
microresonator is a consequence of the delay response of the
cavity mechanical structure to the cavity optical field. This phe-
nomenon was not obvious in the previous demonstration of the
chaotic behavior of the microresonators [9]. So, the origin of the
chaotic behavior could be better understood.

For illustrating dependence of chaotic behavior on quality
factor of the cavity, variation of Lyapunov exponent versus quality
factor for a constant input power is shown in Fig. 4. Lyapunov
exponent is the slope of the rising part of the left panels of Fig. 3.
By increasing the quality factor, for a fixed input power, the
amount of field that couples into and out of the cavity decreases.
For very low quality factors, field enhancement inside the cavity
increases, while, for higher quality factors, it decreases (i.e.
competitive effects of coupling and damping) [18]. So, in the
chaotic regime, for ordinary quality factors, we witness the
decreasing part of the diagram and Lyapunov exponent (as a
measure of degree of the chaotic behavior of the system) decreases
by increasing the quality factor.

The minimum power for transition from periodic regime of
operation to chaotic behavior is called threshold power. Variation
of threshold power versus cavity quality factor is shown in Fig. 5.
As it is expected from previous discussion, by increasing the cavity
quality factor, the threshold power increases due to a decrease in
the field enhancement. A power relation of PthðmWÞ ¼ 10�5Q0:9

exists, a near linear dependence is observed between threshold
power and quality factor.Fig. 1. A schematic diagram of the moving mirror FP cavity.
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