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a b s t r a c t

We propose a potentially practical scheme for creating entanglement between two atomic ensembles in
two coupled cavities via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively
interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the
system, the effective Hamiltonian describes two atomic ensembles interact with “the same cavity mode”
and has a dark state. Consequently, the entanglement between the two ensembles is gained via adiabatic
passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the
experimental parameters. In addition, the effect of decoherence can be suppressed effectively.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

As an unambiguous and quantifiable property of sufficiently
simple multi-party quantum systems, entanglement has recently
begun to be studied in several contexts [1–5]. Also, entanglement
has potential applications in quantum information processing,
such as quantum cryptography [6], quantum teleportation [7] and
quantum dense coding [8]. The qubits storing information include
phonons [9,10], trapped ions [11,12], atoms [12,13], nitrogen-va-
cancy (NV) center ensembles [14,15], etc. Among them, the atoms
in cavity quantum electrodynamics (QED) [16] are well developed
and regarded as ideal candidates for that the information stored in
the atoms is stable. In recent years, many schemes for generating
entangled states of atoms have been proposed [17–20]. Compared
with those schemes that use a single particle as a qubit, the
schemes proposed by Lukin [21], Xue [22], Duan [23], and Han [24]
et al. use an atomic ensemble with a large number of identical
atoms as the basic system. The atomic ensemble that contains a
large number of identical atoms increases the light–matter cou-
pling strength, which scales with the square-root of the number of
the atoms involved in the ensemble. This greatly reduces the op-
eration time and thus suppresses the decoherence. The advantage
allows one to take a more positive view of the atomic ensemble
and regard it as an essential resource for many ingenious

applications such as realizing of quantum repeaters [25,26],
quantum metrology [27], quantum interference [28], and genera-
tion of squeezed states for atomic ensembles [30,29].

Besides, adiabatic techniques are of interest since they feature a
certain robustness, and in systems of Λ type one can avoid a
transient large population in the excited state. Recently, the
techniques of stimulated Raman adiabatic passage (STIRAP) [31]
and fractional stimulated Raman adiabatic passage (f-STIRAP) [32]
have been extensively used for realizing QIP [33–38].

In this paper, we present a new scheme to generate the
maximally entangled state of two atomic ensembles in coupled
cavities via adiabatic passage. By choosing appropriate parameters
of the system, two atomic ensembles interact with “the same
cavity mode”. Under adiabatic condition, the system can be into
steady state at the end of evolution. The process for gaining en-
tanglement is insensitive to the fluctuations of atomic number in
each ensemble and the coupling coefficient between the atoms
and cavity modes. It does not need to control the evolution time
accurately. In addition, based on the effective Hamiltonian, the
atoms are always in ground states and the cavity mode in the
vacuum state, so spontaneous emission and cavity decay can be
efficiently suppressed.

2. Generation of entanglement of atomic ensembles

Let us first briefly describe the dynamical model of our con-
sidered system. Two atomic ensembles are separately trapped in
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two coupled cavities. Suppose that the two cavity modes are re-
sonant with each other. In the interaction picture, the resonant
coupling between the two cavity modes is given by the interaction
Hamiltonian ν= ++ +H a b ab( )0 , where a and b are the annihilation
operators for the cavity modes, and ν is the coupling strength. The
atomic number in the ith cavity is Ni =i( 1, 2). Each atom has an
excited state | 〉e and two ground states | 〉f and | 〉g . The atomic
transition | 〉 ↔ | 〉e g is coupled to the cavity with coupling coeffi-
cient gi and detuning Δgi. Meanwhile, the atoms are driven by a
classical laser field with the Rabi frequency Ωi and detuning Δi

=i( 1, 2). In the interaction picture, the Hamiltonian describing
atom–field interaction is ( = 1)
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Introducing the new bosonic modes = −c a b( )/ 21 ,
= +c a b( )/ 22 [39]. We can rewrite H0 as ν −+ +c c c c( )2 2 1 1 . In terms

of the bosonic modes c1 and c2, the Hamiltonian H0 is diagonal. So
we can take H0 as the “free Hamiltonian” mathematically and
perform the transformation eiH t0 to obtain the atom–field interac-
tion Hamiltonian in the interaction picture. In this case, the
Hamiltonian HI can be rewritten as
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In the case that Δ1, Δ2, Δ ν| ± |g1 , Δ ν| ± |g2 , ν ≫ g1, g2, Ω1, Ω2, the
upper-level | 〉e can be adiabatically eliminated. Choose the detun-
ings appropriately so that the dominant Raman transitions are
induced by the atomic modes and normal mode c2 while the
probability of the coupling between the classical field Ωi =i( 1, 2)
and normal mode c1 is negligible due to a large detuning. Then the
effective Hamiltonian is written as
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We have set Δ Δ ν= −i gi . The first four terms of the Hamiltonian
correspond to the photon-number-dependent Stark shift for the
state | 〉g induced by normal modes c1 and c2. The next two terms
correspond to the Stark shift for | 〉f induced by classical fields. The
last two terms describe the coupling between atomic operator −S1
( −S2 ) and normal mode c2. After the Holstein–Primakoff transfor-
mation [40], the collective atomic operators ( ± ±S S S S, , ,z z1 2 1 2 ) are
associated with the bosonic annihilation operators (creation op-
erators) A and B ( +A and +B ) via

= − = −

= − = −

+ + + +

+ + + +

S A N A A S A A
N

S B N B B S B B
N

,
2

,
2

. (4)

z

z

1 1 1
1

2 2 2
2

When the average number of atoms in the state | 〉f is much smaller
than the total number, i.e., ̂ª¡+A A Na 1 ( ̂ª¡+B B Na 2), the collective
atomic operators are well approximated by ≃+ +S N A1 1 ,

≃+ +S N B ,2 2 ≃ −S N /2z1 1 and ≃ −S N /2z2 2 . The effective Hamilto-
nian reduces to
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Experimentally, we set = =N N N1 2 , = =g g g1 2 , Δ Δ Δ= =1 2 ,
Δ Δ Δ= =g g g1 2 , i.e, α β=N N1 1 2 1. Then He2 reduces to

⎡⎣ ⎤⎦ω Υ Υ= − + + ++ + +H c c c A c B H c( . . ) , (6)e3 2 2 1 2 2 2

where ω Δ= Ng2 /2 , Υ Ω Δ= N g /1 1 , Υ Ω Δ= N g /2 2 . In this paper, we
set =N 102, ν = g600 , Δ = g100 , Δ = g700g and have the parameter
values ω = g2 , Υ Ω= 0.11 1, Υ Ω= 0.12 2. Suppose the system is initially
prepared in the state ϕ| 〉 = | 〉 | 〉10 0AB c1 2, where | 〉10 AB denotes the
one-excitation and zero-excitation states of the collective atomic
modes A and B, and | 〉0 c2 is the vacuum state of the mode c2. The
subspace under our consideration includes the other two basis
states ϕ| 〉 = | 〉 | 〉01 0AB c2 2 and ϕ| 〉 = | 〉 | 〉00 1AB c3 2. Then the whole space
can be decomposed into subspaces with the following dark state:
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Now we proceed to show how the maximally entangled state of
the atomic modes can be generated via adiabatic passage of the
dark state. Based on Eq. (7), if we design the pulse shapes to satisfy
the relations
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we can then adiabatically transfer the initial state ϕ| 〉1 to
ϕ ϕ| 〉 + | 〉( )1

2 1 2 . That is, we first prepared the initial state

ϕ| 〉 = | 〉 | 〉10 0AB c1 2 and the Rabi frequency Ω1 is initially zero while
Ω2 is larger than zero. Then, reduce Ω2 and simultaneously in-
crease Ω1 adiabatically until Ω Ω =/ 12 1 . The phase of the classical
pulse Ω1 is then adjusted so that Ω Ω→ −1 1, while the other
parameters keep unchanged. As a result, we can obtain the target
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