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a b s t r a c t

A new trinucleotide proposition is proved here and allows all the trinucleotide circular codes on the
genetic alphabet to be identified (their numbers and their sets of words). This new class of genetic motifs,
i.e. circular codes (or synchronizing genetic motifs), may be involved in the structure and the origin of
the genetic code, and in reading frames of genes.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We continue our study of the properties of trinucleotide cir-
cular codes. For 50 years, codes, comma-free codes and circular
codes have been mathematical objects studied in biology, mainly
to understand the structure and the origin of the genetic code as
well as the reading frame (construction) of genes, see the pioneer
works (Crick et al., 1957; Golomb et al., 1958a,b). In order to have an
intuitive meaning of these notions, codes are written on a straight
line while comma-free codes and circular codes are written on a
circle, but in both cases, unique decipherability is required.

The genetic code based on 64 trinucleotides is a code in the
sense of language theory, more precisely a uniform code (Berstel
and Perrin, 1985), but not a circular code (Lassez, 1976) (see Remark
2 below). Before the discovery of the genetic code, Crick et al. (1957)
proposed a maximal comma-free code of 20 trinucleotides for cod-
ing the 20 amino acids. In 1996, a maximal circular code X0 of 20
trinucleotides was identified statistically on a large gene population
of eukaryotes and also on a large gene population of prokaryotes
(Arquès and Michel, 1996):

X0 =
{

AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC

GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC
}
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This code X0 has remarkable properties. For example, X0 is self-
complementary: 10 trinucleotides are complementary to the 10
other trinucleotides, e.g. AAC is complementary to GTT , AAT to ATT ,
etc. The two sets of 20 trinucleotides, called X1 and X2, obtained
by a simple shift operation of X0, one and two letters, respectively,
are also maximal circular codes (Arquès and Michel, 1996). This
surprising result, still mysterious, was cited/discussed in research
works in mathematics/computer science and mainly in theoret-
ical biology, e.g. (Koch and Lehman, 1997; Béal and Senellart,
1998; Bassino, 1999; Štambuk, 1999; Jolivet and Rothen, 2001;
Nikolaou and Almirantis, 2003; May et al., 2004; Lassez et al.,
2007; Pirillo, 2003; José et al., 2009). Its main biological conse-
quence would be that genes have (or had) two codes: the classical
genetic code to code the amino acids and a circular code to retrieve
the reading frames of genes. Therefore, the computational study
of trinucleotide circular codes is particularly important in biol-
ogy.

The determinations of very small classes of trinucleotide circu-
lar codes, precisely the 99,320 self-complementary trinucleotide
circular codes (Pirillo and Pirillo, 2005) and about 559 millions trin-
ucleotide comma-free codes (Michel et al., 2008a), were obtained
by using the classical flower automaton algorithm (Berstel and
Perrin, 1985). We recently identified a relation between these two
classes of trinucleotide codes by constructing a hierarchy of codes
that are closed by the comma-free codes and the circular codes
(Michel et al., 2008b). The whole class of all the trinucleotide cir-
cular codes is identified in this paper (their numbers and their
sets of words). This problem has a computational complexity with
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an order of magnitude significantly higher than the two previous
cases (more than 200 times). Indeed, about 116 billion trinucleotide
circular codes are identified. The proof of a new trinucleotide
proposition (Proposition 3), which appears obvious afterwards,
allows the computational problem associated with the general case
to be solved. Thus, this short Proposition 3 which can easily be pro-
grammed, allows circular codes (synchronizing genetic motifs) on
the genetic alphabet to be identified.

2. Definitions

Let A denote a finite alphabet, A∗, the set of all words over A and
A+, the set of all words over A except the empty word ε. Given a
subset X ofA∗, Xn is the set of the words overAwhich is the product
of n words from X, i.e. Xn =

{
x1x2· · ·xn|xi ∈ X

}
.

There is a correspondence between the genetic and language-
theoretic concepts. The letters (or nucleotides or bases) define
the genetic alphabet A4 = {A, C, G, T}. The set of non-empty words
(resp. words) over A4 is denoted by A+

4 (resp. A∗
4). The set of the

16 words of length two (or dinucleotides or diletters) is denoted
by A2

4. The set of the 64 words of length three (or trinucleotides or
triletters) is denoted by A3

4. The total order over the alphabet A4
is A < C < G < T . Consequently, A+

4 is lexicographically ordered:
given two words u, v ∈A+

4 , u is smaller than v in lexicographical
order, written u < v, if and only if either u is a proper prefix of v
or there exist x, y ∈A4, x < y, and r, s, t ∈A∗

4 such that u = rxs and
v = ryt.

Definition 1. Code: A set X of A+ is a code over A if for each
x1, . . . , xn, x′

1, . . . , x′
m ∈ X , n, m ≥ 1, the condition x1· · ·xn = x′

1· · ·x′
m

implies n = m and xi = x′
i
for i = 1, . . . , n.

Remark 1. The setA3
4 itself is a code. More precisely, it is a uniform

code (Berstel and Perrin, 1985).

Notation 1. Consequently, any non-empty subset of A3
4 is a code

called trinucleotide code in this paper.

Definition 2. Trinucleotide circular code: A trinucleotide code
X ∈A3

4 is circular if for each x1, . . . , xn, x′
1, . . . , x′

m ∈ X , n, m ≥ 1,
p ∈A∗

4, s ∈A+
4 , the conditions sx2· · ·xnp = x′

1· · ·x′
m and x1 = ps imply

n = m, p = ε and xi = x′
i
for i = 1, . . . , n.

Remark 2. A3
4 is obviously not a trinucleotide circular code.

Definition 3. Maximal trinucleotide circular code: A trinucleotide
circular code X ∈A3

4 is maximal if for each x ∈A3
4, X ∪ {x} is not a

trinucleotide circular code.

Remark 3. Any trinucleotide circular code with 20 words is max-
imal. Therefore, the lengths of trinucleotide circular codes vary
between 1 and 20.

3. Propositions

Proposition 1. The number of trinucleotide circular codes of length
1 is equal to 60.

Proof. Obvious. �

Proposition 2. The number of trinucleotide circular codes of length
20 is equal to 12,964,440.

Proof. This number was obtained in 1996 by using the flower
automaton algorithm (Table 2(d) in Arquès and Michel, 1996). �

In order to compute the growth function of trinucleotide circular
codes for all lengths l = 1, . . . , 20, we extend the necklace defini-
tion (Pirillo, 2003; Michel et al., 2008b). l1, l2, . . . , ln−1, ln, . . . are

letters in A4, d1, d2, . . . , dn−1, dn, . . . are diletters in A2
4 and n is an

integer satisfying n ≥ 2.

Definition 4. Letter Diletter Continued Closed Necklaces (LDCCN):
We say that the ordered sequence l1, d1, l2, d2, . . . , dn−1, ln, dn, ln+1
is an (n + 1)LDCCN for a subset X ⊂ A3

4 if l1d1, l2d2, . . . , lndn ∈ X and
d1l2, d2l3, . . . , dn−1ln, dnln+1 ∈ X and l1 = ln+1.

Notation 2. An (n + 1)LDCCN l1, d1, l2, d2, . . . , dn−1, ln, dn, ln+1
is denoted by [l1, d1, l2, d2, . . . , dn−1, ln, dn]. Accordingly:
a 2LDCCN, i.e. [l1, d1], has the form l1, d1, l1; a 3LDCCN,
i.e. [l1, d1, l2, d2], has the form l1, d1, l2, d2, l1; a 4LDCCN,
i.e. [l1, d1, l2, d2, l3, d3], has the form l1, d1, l2, d2, l3, d3, l1;
a 5LDCCN, i.e. [l1, d1, l2, d2, l3, d3, l4, d4], has the form
l1, d1, l2, d2, l3, d3, l4, d4, l1.

Proposition 3. Let X be a trinucleotide circular code. The following
conditions are equivalent.

(i) X is a trinucleotide circular code.
(ii) X has no nLDCCN for any integer n ∈ {2, 3, 4, 5}.

Proof. (i) ⇒ (ii). By way of contradiction, suppose that X has some
nLDCCN for some integer n ∈ {2, 3, 4, 5}.

If it is a 2LDCCN then l1, d1, l1, d1, l1, d1, l1, d1, l1 is a 5LDCN for
X.

If it is a 3LDCCN then l1, d1, l2, d2, l1, d1, l2, d2, l1 is a 5LDCN for
X.

If it is a 4LDCCN then l1, d1, l2, d2, l3, d3, l1, d1, l2 is a 5LDCN for
X.

If it is a 5LDCCN then l1, d1, l2, d2, l3, d3, l4, d4, l1 is a 5LDCN for
X.

In each of these four cases, by Proposition 1, X is not a trinu-
cleotide circular code. Contradiction.

(ii) ⇒ (i). By way of contradiction, suppose that X is not a
trinucleotide circular code. By Proposition 1, X has a 5LDCN, say
l1, d1, l2, d2, l3, d3, l4, d4, l5. As A4 has four letters, then li = lj for
some i, j, 1 ≤ i ≤ j ≤ 5.

If j − i = 4 then l1 = l5 and [l1, d1, l2, d2, l3, d3, l4, d4] is a 5LDCCN
for X.

If j − i = 3 then [li, di, li+1, di+1, li+2, di+2] is a 4LDCCN for X.
If j − i = 2 then [li, di, li+1, di+1] is a 3LDCCN for X.
If j − i = 1 then [li, di] is a 2LDCCN for X.
In each of these four cases, by Proposition 1, there is a contra-

diction with (ii). �

Necklace algorithm (principle): This new Proposition 3 is used to
compute all the trinucleotide circular codes (growth function for
all lengths l = 1, . . . , 20). The principle of this necklace algorithm
is simple. If the algorithm identifies a necklace iLDCCN for a given
i ∈ {2, 3, 4, 5} in a code, then it is not circular and the algorithm
stops avoiding to analyse the next necklaces jLDCCN for j > i and
j ∈ {2, 3, 4, 5}.

4. Results

Table 1 shows the number Nb(l) of trinucleotide circular codes
of length l. The growth function has a minimum number NbMin =
60 at l = 1 and a maximum number NbMax = 23,403,485,556 at
l = 13. Fig. 1 associated with Table 1 gives the graphical distribu-
tion of trinucleotide circular codes. The distribution is asymmetric
with respect to NbMax at l = 13. The numbers of codes of l = 13

and l = 14 are close. There are NbPot(l) =
(

20
l

)
× 3l potential

trinucleotide circular codes of length l ∈
{

1, 20
}

. Therefore, the
probability Pr(l) of a trinucleotide circular code of length l is equal
to Pr(l) = Nb(l)/NbPot(l). Table 1 and Fig. 1 also show this proba-
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