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The propagation of temporal-spatial surface plasmon polaritons propagating along a flat dielectric/metal
interface is investigated. The governing envelope equation for these surface plasmons is found to be the
damped nonlinear Schrodinger (NLS) equation with two spatial-like dimensions and one evolution
dimension. Depending on whether the dispersion is anomalous or normal the dispersion of this
multidimensional nonlinear NLS equation can be elliptic or hyperbolic. In the elliptic case a localized
initial mode is found to focus before damping effects begin to act. In the hyperbolic case the solution is
found to be self-similar which also eventually decays due to damping.
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1. Introduction

The field of plasmonics is a very active field of optics. There have
been many promising advancements in using plasmonics in nanos-
tructured materials incorporating metals. This has included a variety
of applications including lasers, sensors and sub-wavelength wave-
guides [1]. These advances provide exciting prospects for the devel-
opment of new technologies in telecommunications, computing and
information processing [2].

However, it is becoming evident that the study of surface
plasmon polaritons (SPPs) should take into account nonlinear
effects because plasmon focusing can develop large amplitude
wave phenomena. Nonlinear models can explain interesting new
effects.

In recent years researchers have begun to incorporate cubic
polarization of dielectrics when modeling SPPs propagating along a
flat dielectric/metal interface, leading to nonlinear amplitude equa-
tions. There are both temporal and spatial waves that can exist. In
[3] envelope temporal solitons were found to be able to propagate
along interfacial structures composed of two dielectrics or a
dielectric and metal. Here the authors employ averaging methods
to establish that a one dimensional nonlinear Schrodinger equation
governs the wave propagation. On the other hand it was shown in
[4] that spatial solitons can also propagate along dielectric and
metal interfaces. In the latter paper the authors started with the
Helmholtz equation, and using the paraxial approximation, showed
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that the amplitude of the SPP is a solution of the following one
space one evolution (1+1) dimensional nonlinear Schrodinger
(NLS) equation

iA;+1/2B)Ay +VIAPA=0, 1

where /3 is the wave number in the direction (z) of propagation, and
v is a constant related to the Kerr nonlinearity. In 2009 beginning
with the vector wave equation, which is derived from Maxwell's
equations, and employing the paraxial approximation the damped
1+1 dimensional NLS equation

—2iPDA;, +Ayy+2IAPA+ITA=0 )

was obtained [5]; here D= [EZ dx/ [|Eo[*> dx where Eq is the
solution to the linear problem and E, ¢ is its x component, I relates
to the cubic nonlinearity and the damping term /" is due to the
complex permittivity of the metal. In [6] the authors considered
tapered waveguides, and in [7] femtosecond pulses in the tele-
communication spectrum were studied in the context of SPPs.
Further studies on nonlinear SPPs have been undertaken in [8],
where a cubic Ginzburg-Landau equation was derived, and [9],
where general coupled-mode SPP equations in periodic media with
loss and gain are derived.

In this paper we extend the analysis and modeling SPPs by
performing a multiple scales analysis, and allow pulses to depend
on temporal and spatial variations as they propagate along the
interface. For the first time we show for a SPP propagating along a
flat dielectric/metal interface in the z direction that the slowly
varying amplitude of the plasmon is a solution of the following
normalized 2+ 1 dimensional temporal-spatial damped NLS equa-
tion:
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where Y and T are slow spatial variables, T is retarded time,
k = k(w) is the dispersion relation (k' = d,,k) and 7 is related to the
damping (see Eq. (43) below). Since in this case the amplitude
now depends on time, this allows for a nonzero plasmon group
velocity.

This multidimensional 2+ 1 dimensional NLS equation exhibits
very different phenomena than its 1+ 1 dimensional counterpart
cf. [17]. For the above Eq. (3), depending on the sign of C;, the
equation can be elliptic or hyperbolic. Both cases lead to interest-
ing mathematical results with corresponding novel physics. In
particular, in the elliptic case we show that localized modes can
exhibit focusing, arrest and decay, and in the hyperbolic case
localized modes tend towards a linear similarity solution for large
Z. To our knowledge no one has previously found that self-similar
behavior describes the long time structure of the two dimensional
hyperbolic NLS equation. The outline of this paper is as follows. In
Section 2 we analyze the linear problem, where we neglect the
nonlinear polarization of the dielectric and also the imaginary part
of the permittivity of the metal which is taken to be much smaller
than the real part. The solution of the linear problem forms the
basis for solving the nonlinear problem, which is done in Section 3.
In Section 4 we then look at the propagation of localized modes for
Eq. (3), for both the elliptic and hyperbolic cases.

2. Linear problem

We consider a SPP propagating in the z direction along a flat
dielectric/metal interface at x=0, as shown in Fig. 1.

The governing equations for the electric field E = (Ey,Ey.E;)
come from Maxwell's equations, and are

VZE—V(V - E)—Cl—zanD=0 4)

v-D=0, (5)

where c is the speed of light in a vacuum. The displacement field
D is given by D = €E, where ¢ is the relative permittivity. For the
linear problem we assume that € is constant in both materials, and
thus D is a linear function of E. From the physical properties of the
materials, in the dielectric we have ¢; > 0, and in the metal ¢, < 0.
We look for a solution of the form

Dielectric: E=(Ag,0,Cq)e? " +(x) (6)

Metal :  E= (A, 0, Cp)eld+m* 4 (x), (7)

where the phase is given by § =kz—wt, k and @ are the wave
number and frequency of the SPP respectively, r; >0 and rp, >0
are decay constants which depend on w (as do &4, €m), (x) denotes
the complex conjugate of the preceding term and the amplitudes
A; and C; are taken to be constant. With this ansatz, Egs. (4) and (5)
give in the dielectric
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and similarly in the metal. These give the relations
Ag=(k/r9)Cq, Am= —(@k/Tm)Cn, an
as well as the two equivalent forms of the dispersion relation
k=k(w)
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Fig. 1. Setup for propagation of SPPs along flat dielectric/metal interface at x=0.
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We must also consider continuity across the interface x=0 (see e.g.
[10]). Physically, the D field is continuous in the x direction, and
the E field is continuous in the tangential y and z directions. This
implies that k and @ are continuous, that C4=C,, and

€4Aq = EmAnm. (13)

For simplicity we set C:=Cy = Cp,, and using (13) in (11) leads to
Ea Em_, (14)
g Tm

Using (14) with (12) allows us to eliminate r4 and r,,, obtaining

k2=w72( Ed€m > (15)
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Eq. (15) is the SPP linear dispersion relation, and shows that k is
related to the free space wavenumber k, = @/c by
EJEm

k:ko €d+8m. (16)

The decay constants are then given by
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The linear SPP solution in either the dielectric or metal is therefore
given by

rg=ko

Diel. E = (ik/rg,0,1)Ce®@~®D=TeX 4 () (18)

Met. E=(—ik/rp,0,1)Ceike-@0+mx 4 () (19)

where k(w) is given by (15) and the two decay constants r4(w) and
rm(w) are given by (17).

3. Nonlinear problem

The main difference between the linear and nonlinear
problems is the cubic polarization of the dielectric. Since, as is
standard, we assume nonlinear effects to be small, we solve
(4) and (5) by performing a multiple scales analysis where we set
E=¢eE" +e2E? +E® + ..., (20)

where €« 1, E depends on suitable fast and slow scales and then
each E? is independent of €. Using the linear solution (18) and (19)
as the basis for the nonlinear ansatz, we look for a solution in the
dielectric of the form

Ex = e{e~"a@+ieonx jk /1 yCel¥ 4 (%)}
+€2{e—rd(w+ie()T)XA2dei0+(*)}+O(€3) (2-1)
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