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a b s t r a c t

The propagation of temporal-spatial surface plasmon polaritons propagating along a flat dielectric/metal
interface is investigated. The governing envelope equation for these surface plasmons is found to be the
damped nonlinear Schrod̈inger (NLS) equation with two spatial-like dimensions and one evolution
dimension. Depending on whether the dispersion is anomalous or normal the dispersion of this
multidimensional nonlinear NLS equation can be elliptic or hyperbolic. In the elliptic case a localized
initial mode is found to focus before damping effects begin to act. In the hyperbolic case the solution is
found to be self-similar which also eventually decays due to damping.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The field of plasmonics is a very active field of optics. There have
been many promising advancements in using plasmonics in nanos-
tructured materials incorporating metals. This has included a variety
of applications including lasers, sensors and sub-wavelength wave-
guides [1]. These advances provide exciting prospects for the devel-
opment of new technologies in telecommunications, computing and
information processing [2].

However, it is becoming evident that the study of surface
plasmon polaritons (SPPs) should take into account nonlinear
effects because plasmon focusing can develop large amplitude
wave phenomena. Nonlinear models can explain interesting new
effects.

In recent years researchers have begun to incorporate cubic
polarization of dielectrics when modeling SPPs propagating along a
flat dielectric/metal interface, leading to nonlinear amplitude equa-
tions. There are both temporal and spatial waves that can exist. In
[3] envelope temporal solitons were found to be able to propagate
along interfacial structures composed of two dielectrics or a
dielectric and metal. Here the authors employ averaging methods
to establish that a one dimensional nonlinear Schrod̈inger equation
governs the wave propagation. On the other hand it was shown in
[4] that spatial solitons can also propagate along dielectric and
metal interfaces. In the latter paper the authors started with the
Helmholtz equation, and using the paraxial approximation, showed

that the amplitude of the SPP is a solution of the following one
space one evolution (1þ1) dimensional nonlinear Schrod̈inger
(NLS) equation

iAzþ1=ð2βÞAyyþνjAj2A¼ 0; ð1Þ
where β is the wave number in the direction (z) of propagation, and
ν is a constant related to the Kerr nonlinearity. In 2009 beginning
with the vector wave equation, which is derived from Maxwell's
equations, and employing the paraxial approximation the damped
1þ1 dimensional NLS equation

�2iβDAzþAyyþ2IjAj2Aþ iΓA¼ 0 ð2Þ
was obtained [5]; here D¼ R

E2x0 dx=
R jE0j2 dx where E0 is the

solution to the linear problem and Ex 0 is its x component, I relates
to the cubic nonlinearity and the damping term Γ is due to the
complex permittivity of the metal. In [6] the authors considered
tapered waveguides, and in [7] femtosecond pulses in the tele-
communication spectrum were studied in the context of SPPs.
Further studies on nonlinear SPPs have been undertaken in [8],
where a cubic Ginzburg–Landau equation was derived, and [9],
where general coupled-mode SPP equations in periodic media with
loss and gain are derived.

In this paper we extend the analysis and modeling SPPs by
performing a multiple scales analysis, and allow pulses to depend
on temporal and spatial variations as they propagate along the
interface. For the first time we show for a SPP propagating along a
flat dielectric/metal interface in the z direction that the slowly
varying amplitude of the plasmon is a solution of the following
normalized 2þ1 dimensional temporal–spatial damped NLS equa-
tion:

iCZþ iηCþCYY �sgnðkk″ÞCTT þjCj2C ¼ 0; ð3Þ
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where Y and T are slow spatial variables, T is retarded time,
k¼ kðωÞ is the dispersion relation ðk0 � ∂ωkÞ and η is related to the
damping (see Eq. (43) below). Since in this case the amplitude
now depends on time, this allows for a nonzero plasmon group
velocity.

This multidimensional 2þ1 dimensional NLS equation exhibits
very different phenomena than its 1þ1 dimensional counterpart
cf. [17]. For the above Eq. (3), depending on the sign of CTT, the
equation can be elliptic or hyperbolic. Both cases lead to interest-
ing mathematical results with corresponding novel physics. In
particular, in the elliptic case we show that localized modes can
exhibit focusing, arrest and decay, and in the hyperbolic case
localized modes tend towards a linear similarity solution for large
Z. To our knowledge no one has previously found that self-similar
behavior describes the long time structure of the two dimensional
hyperbolic NLS equation. The outline of this paper is as follows. In
Section 2 we analyze the linear problem, where we neglect the
nonlinear polarization of the dielectric and also the imaginary part
of the permittivity of the metal which is taken to be much smaller
than the real part. The solution of the linear problem forms the
basis for solving the nonlinear problem, which is done in Section 3.
In Section 4 we then look at the propagation of localized modes for
Eq. (3), for both the elliptic and hyperbolic cases.

2. Linear problem

We consider a SPP propagating in the z direction along a flat
dielectric/metal interface at x¼0, as shown in Fig. 1.

The governing equations for the electric field E¼ ðEx; Ey; EzÞ
come from Maxwell's equations, and are

∇2E�∇ð∇ � EÞ� 1
c2
∂ttD¼ 0 ð4Þ

∇ � D¼ 0; ð5Þ
where c is the speed of light in a vacuum. The displacement field
D is given by D¼ εE, where ε is the relative permittivity. For the
linear problem we assume that ε is constant in both materials, and
thus D is a linear function of E. From the physical properties of the
materials, in the dielectric we have εd40, and in the metal εmo0.
We look for a solution of the form

Dielectric : E¼ ðAd;0;CdÞeiθ� rdxþð⋆Þ ð6Þ

Metal : E¼ ðAm;0;CmÞeiθþ rmxþð⋆Þ; ð7Þ
where the phase is given by θ¼ kz�ωt, k and ω are the wave
number and frequency of the SPP respectively, rd40 and rm40
are decay constants which depend on ω (as do εd; εm), ð⋆Þ denotes
the complex conjugate of the preceding term and the amplitudes
Ai and Ci are taken to be constant. With this ansatz, Eqs. (4) and (5)
give in the dielectric

�k2Adþ ikrdCdþ
ω2

c2
εdAd ¼ 0 ð8Þ

�k2Cdþ ikrdAdþ
ω2

c2
εdCd ¼ 0 ð9Þ

�rdAdþ ikCd ¼ 0; ð10Þ
and similarly in the metal. These give the relations

Ad ¼ ðik=rdÞCd; Am ¼ �ðik=rmÞCm; ð11Þ
as well as the two equivalent forms of the dispersion relation
k¼ kðωÞ

k2 ¼ r2dþ
ω2

c2
εd; k2 ¼ r2mþω2

c2
εm: ð12Þ

Wemust also consider continuity across the interface x¼0 (see e.g.
[10]). Physically, the D field is continuous in the x direction, and
the E field is continuous in the tangential y and z directions. This
implies that k and ω are continuous, that Cd¼Cm, and

εdAd ¼ εmAm: ð13Þ

For simplicity we set C≔Cd ¼ Cm, and using (13) in (11) leads to

εd
rd

þεm
rm

¼ 0: ð14Þ

Using (14) with (12) allows us to eliminate rd and rm, obtaining

k2 ¼ω2

c2
εdεm
εdþεm

� �
: ð15Þ

Eq. (15) is the SPP linear dispersion relation, and shows that k is
related to the free space wavenumber ko ¼ω=c by

k¼ ko

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εdεm
εdþεm

r
: ð16Þ

The decay constants are then given by

rd ¼ ko

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ε2d

εdþεm

s
; rm ¼ ko

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ε2m
εdþεm

s
: ð17Þ

The linear SPP solution in either the dielectric or metal is therefore
given by

Diel: E¼ ðik=rd;0;1ÞCeiðkz�ωtÞ� rdxþð⋆Þ ð18Þ

Met: E¼ ð� ik=rm;0;1ÞCeiðkz�ωtÞþ rmxþð⋆Þ; ð19Þ
where kðωÞ is given by (15) and the two decay constants rdðωÞ and
rmðωÞ are given by (17).

3. Nonlinear problem

The main difference between the linear and nonlinear
problems is the cubic polarization of the dielectric. Since, as is
standard, we assume nonlinear effects to be small, we solve
(4) and (5) by performing a multiple scales analysis where we set

E¼ ϵEð1Þ þϵ2Eð2Þ þϵ3Eð3Þ þ⋯; ð20Þ
where ϵ{1, E depends on suitable fast and slow scales and then
each EðiÞ is independent of ϵ. Using the linear solution (18) and (19)
as the basis for the nonlinear ansatz, we look for a solution in the
dielectric of the form

Ex ¼ ϵfe� rdðωþ iϵ∂T Þxðik=rdÞCeiθþð⋆Þg
þϵ2fe� rdðωþ iϵ∂T ÞxA2de

iθþð⋆ÞgþOðϵ3Þ ð21Þ

Ey ¼ ϵ2fe� rdðωþ iϵ∂T ÞxB1de
iθþð⋆ÞgþOðϵ3Þ ð22Þ

Ez ¼ ϵfe� rdðωþ iϵ∂T ÞxCeiθþð⋆Þg
þϵ2fe� rdðωþ iϵ∂T ÞxC2eiθþð⋆ÞgþOðϵ3Þ ð23Þ

Fig. 1. Setup for propagation of SPPs along flat dielectric/metal interface at x¼0.
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