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a b s t r a c t

We present a theoretical study of a new application of a phase-shifted Bragg grating (PSBG) in trans-
mission mode as a spatial optical integrator. The PSBG consists of two identical Bragg gratings separated
with a phase-shift defect layer. It is shown that PSBG enables performing the operation of spatial in-
tegration of the profile of the 2D incidence beamwith a central spatial frequency close to the propagation
constant of a quasiguided mode localized in the defect layer. The spatial integration is performed with an
exponential weight function, the decay rate of which is determined by the quality factor of the re-
sonance. The rigorous electromagnetic simulations demonstrate good agreement between numerical
results and the given theoretical description.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spatiotemporal transformations of optical signals are of great
interest for a wide range of applications including optical pulse
and beam shaping, analog optical computations and ultrafast all-
optical data processing [1,2]. One of the promising structures to
perform the said transformations is the phase-shifted Bragg grat-
ing (PSBG) consisting of two identical Bragg gratings separated
with a phase-shift defect layer. Previously, it was demonstrated
that a PSBG is able to perform temporal differentiation of an op-
tical pulse envelope in reflection [2–4] and integration of the pulse
envelope in transmission [5]. Spatial differentiation of 2D optical
beams using PSBG was recently proposed in [6]. In [6], it was
shown that a PSBG enables the optical computation of the first and
second derivatives of the incident beam profile in reflection. In the
present work, it is demonstrated for the first time that PSBGs al-
low performing the operation of spatial integration of a 2D beam
profile in transmission. We believe that the proposed applications
of the PSBG could be useful in various real-time all-optical image
processing applications. In particular, the PSBG can be considered
as an ultra-compact analog of a classic 4f Fourier-transform cor-
relator consisting of a pair of lenses with a spatial integrating filter
in the Fourier plane. Another approach for spatial beam processing

is based on the use of spatial light modulators (SLM). The resolu-
tion of the SLM is determined by the size of the pixel, which is
typically of the order of several micrometers. At the same time, the
proposed structure can perform certain transformations of the
beam with total transverse size comparable to the SLM pixel size.

2. Beam diffraction on resonant structure

Let us consider oblique incidence of a 2D optical beam on a
multilayer structure consisting of homogeneous layers. The beam
propagates in the negative direction of the z-axis in the coordinate
system x z( , ) associated with the beam and rotated by an angle θ0
relative to the coordinate system of the multilayer structure
x z( , )ml ml (Fig. 1). In this coordinate system, the plane wave ex-
pansion of the incident beam has the following form:

∫π
= − − ·P x z G k k x k n k z k( , )

1
2

( ) exp{i i } d , (1)x x x xinc 0
2
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where G k( )x , | | ≤k gx , is the angular (spatial frequency) spectrum
of the beam, π λ=k 2 /0 is the wave number, θ=k k n sinx 0 sup and

= −k k n kz x0
2

sup
2 2 are the wave vector components of the incident

waves, and nsup is the refractive index of the superstrate. The
function P x z( , )inc corresponds to the Ey component of the electric
field in case of TE-polarization and to the Hy component of the
magnetic field in case of TM-polarization.
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The transmitted field can be represented as

∫π
= ˜ · − − ·P x z G k T k k x k n k z k( , )
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2
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tr

where ˜T k( )x is the complex transmission coefficient of the multilayer

structure, and θ θ θ˜ = + = + −k k n k k n ksin( ) cosx x x0 sup 0 0 0
2

sup
2 2

θsin 0 corresponds to the −x componentml [in the coordinate system
x z( , )ml ml ] of the wave vector of a plane wave incident on the structure
at an angle θ θ+ 0. Let us note that Eq. (2) is written in the coordinate
system associated with the transmitted beam (Fig. 1). Here we assume
that the origins of the coordinate systems (x,z) and x z( , )tr tr coincide
with that of the coordinate system x z( , )ml ml .

Assuming that the spectrum of the incident beam is sufficiently
narrow ≪g k n( )0 sup , we obtain

θ θ θ˜ ≈ + = +k k k n k kcos sin cos , (3)x x x x0 0 sup 0 0 ,0

where θ=k k n sinx,0 0 sup 0 is the central spatial frequency of the
incident beam. Let us consider the relation between the incident
beam profile P x( , 0)inc and the transmitted beam profile P x( , 0)tr tr .
It follows from Eqs. (1) and (2) that the transformation of the
incident beam profile can be described in terms of the signal
transmission through a linear time-invariant system with the
transfer function (TF) defined by the following expression [6]:

θ= +H k T k k( ) ( cos ). (4)x x xtr 0 ,0

Let us show that a PSBG can be used for the spatial integration
of the optical beams in transmission. Consider a PSBG consisting of
two symmetric Bragg gratings separated by a defect layer. In the
simplest case, one period of a Bragg grating contains two layers
having equal optical thickness:

λ˜ = ˜ =n h n h /4, (5)B1 1 2 2

where θ˜ = − =n n n i( sin ) , 1, 2i i
2

sup 0
2 ; n h,i i are the refractive

indices and the thicknesses of the layers, and λB is the Bragg wa-
velength. If the defect layer has the optical thickness

λ˜ =n h /2Bdef def , where θ˜ = −n n n( sin )def def
2

sup 0
2 , ndef being the

refractive index of the defect layer, the reflection coefficient of the

Bragg grating vanishes at wavelength λB and angle of incidence θ0
for both TE- and TM-polarizations [3,5,6]. Let us note that this
reflectance zero is located at the center of the first photonic band
gap of the Bragg grating.

The appearance of the reflection zero is associated with the
excitation of a quasiguided mode localized in the defect layer. In
the vicinity of the resonance, the transmission coefficient can be
approximately represented in the following form [6–9]:

˜ ≈ + ˜ −
− ˜ +

T k a
b

k k
b

k k
( ) ,

(6)
x

x x p x x p, ,

where a is the non-resonant transmission coefficient, b is the
coefficient describing the resonant light scattering by the struc-
ture, and kx p, is the complex propagation constant of the eigen-

mode of the PSBG corresponding to the pole of the function ˜T k( )x .
Let us note that the transmission coefficient (6) is an even function
with respect to the incidence angle and therefore contains two
resonant terms corresponding to the modes with the propagation
constants ±kx p, (these modes are excited at ˜ = = ±k k kRex x x p,0 , ).
We further assume that the PSBG has a sufficiently large number
of layers so that the non-resonant transmission coefficient a in Eq.
(6) can be neglected.

3. Beam integration

3.1. Oblique incidence

Let us first study the diffraction of the obliquely incident beam.
We consider the case when the central spatial frequency of the
incident beam kx,0 is large enough, so the influence of the second
pole (−kx p, ) on the spectrum is negligible. In this case, we obtain

˜ ≈ ˜ −
T k

b
k k

( ) .
(7)

x
x x p,

Thus, the TF defined by Eq. (4) with the transmission coefficient in
Eq. (7) takes the form

θ
=

− −
H k

b
k k k

( )
cos ( )

,
(8)

x
x x p x0 , ,0

where | | = | − |b k kx x p,0 , . The given value of | |b could be easily de-
rived from the condition | | =T k( ) 1x,0 .

Let us examine the transformation of the input signal that is
performed by a linear system with the TF of Eq. (8). For this, we
write the impulse response of the system by calculating the in-
verse Fourier transform of the TF in Eq. (8) as
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where xsgn is the sign function and u(x) is the Heaviside step
function. The integral in Eq. (9) was calculated using Cauchy's
residue theorem and Jordan's lemma. According to Eq. (9), the
impulse response is nonzero at >x 0 or at <x 0 depending on the
position of the pole kx p, in the upper or lower half-plane,
respectively.

Using Eq. (9), let us represent the profile of the transmitted
beam in the form of an integral with variable upper limit of the

Fig. 1. Diffraction of an optical beam on a phase-shifted Bragg grating.
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