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a b s t r a c t

Based on the angular spectrum representation of the Maxwell equations and the method of stationary
phase, this paper presents the far-field analytical expression of a pulsed hollow Gaussian beam with
constant waist width diffracted by the circular aperture, and the result can be simplified for the case of
the paraxial propagation of pulsed Gaussian beam in the free space. Based on the analytical result, the
influences of truncation parameter on the transverse intensity distribution of the pulsed beam are
analyzed. Comparisons of normalized temporal intensity between the pulsed Gaussian beam and the
fourth order pulsed hollow Gaussian beam are presented. We find that the spatial mode can induce the
temporal shape changing.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diffraction is one of the fundamental problems of the propa-
gation of light. The diffraction theory of monochromatic light has
been developed in great detail. Recent developments in optics
resulted in the generation of ultrashort pulses with extremely
broad spectra. Significant efforts have been devoted to investigate
their propagation properties. However, most of the studies of
pulsed beam propagation have considered only the fundamental
Gaussian mode. Two different assumptions are typically made in
these studies, i.e., diffraction length is assumed to be constant
(constant diffraction length) [1–4], or the waist width is assumed
to be constant (constant waist width) [5–8]. Because of the
mathematical difficulty in dealing with the propagation of ultra-
short pulsed beams with constant waist width, usually numerical
results or approximate propagation expressions are found in the
past studies. Beyond these, there are few studies focused on the
diffraction of pulsed beam from the hard edges [9–11].

In 2003, a convenient theoretical model named hollow Gaus-
sian beam (HGB) was introduced to describe dark-hollow beams
[12]. After that, considerable attention has been focused on in-
vestigating hollow Gaussian beams [13–19]. Xu et al. [20] in-
troduced a model of isodiffracting hollow Gaussian pulsed beams
and discussed the influence of beam order on on-axis temporal
profiles.

In this paper, we concentrate on the propagation of pulsed
hollow Gaussian beam with constant waist width through a hard

aperture. In Section 2, based on the angular spectrum re-
presentation and the method of stationary phase, an analytical
propagation expression in the far-field is derived without any
approximation. Numerical calculation results and comparative
investigations are provided in Section 3. Finally, the results ob-
tained in this paper are summarized in Section 4.

2. Analytical expression of pulsed HGB in the far-field

The monochromatic components of the pulse electromagnetic
field in vacuum satisfy the Helmholtz equation

ω∇ + =k E r( ) ( , ) 0, (1)2 2

where ∇2 is the Laplace operator; ω=k c/ is the wave number with
c being the light speed in vacuum; = + +x y zr i j k, i, j, and k are
the unit vectors in the x-, y- and z-directions, respectively; ωE r( , )
is the Fourier transform of optical field E tr( , ). Thus, E tr( , ) can be
obtained from ωE r( , )
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From the angular spectrum theory, ωE r( , ) can be expressed as
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where ωA k k( , , )x y is the angular spectrum. It can be obtained from
the initial optical field ωE r( , )0 :

∫ ∫ω
π

ω= +
−∞

∞

−∞

∞
A k k E r ik x ik y dx dy( , , )

1
2

( , )exp( ) . (4)x y x y0 0 0 0 0

In the Cartesian coordinate system, a pulsed HGB propagates
toward the half-space >z 0. The z-axis is adopted to be the pro-
pagation axis. A circular aperture with radius R is assumed to be
located at the source plane =z 0. The pulsed HGB just behind the
circular aperture is expressed as
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where ρ = +x y( )0 0
2

0
2 1/2, n is the beam order of HGB, W0 is the beam

waist radius of the beam which is independent of frequency, ωf ( )
is the spectrum of the initial pulse, ⋅circ( ) denotes the aperture
function and is given by

ρ ρ ρ ρ= < < = >circ R R circ R R( / ) 1 for 0 ; ( / ) 0 for . (6)0 0 0 0

To obtain the analytical expression of the field, the aperture
function can be expanded into the sum of complex Gaussian
functions:
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where the expansion coefficients Bm and Cm can be determined by
optimization computation. Wen et al. [21] obtained a set of
coefficients, containing only ten terms of coefficients, to match
the original aperture function of Eq. (6). It shows that a good
agreement between a ten-term Gaussian beam solution and the
results of numerical integration throughout the beam field was
achieved, and the discrepancies existed only in the extreme near
field. In the following calculations, we will take =M 10. Let us
consider the propagation of an electromagnetic wave with Gaus-
sian temporal modulation at =z 0
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where ω0 is carrier frequency, T2 is the width of pulse (full width
at −e 1 of the maximum intensity). π ω=T 2 /0 0 is an optical cycle
corresponding to ω0.

Inserting Eq. (5) into Eq. (4) and performing the integral, we
can obtain
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where =C R W/0
2

0
2 is the truncation parameter, ⋅L ( )n denotes La-

guerre polynomial with the order n. In the far field, the condition
→ ∞kr is fulfilled. Inserting Eq. (10) into Eq. (3) and performing

the integral by the method of stationary phase, it can be obtained
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where = + +r x y z( )2 2 2 1/2. In order to get the analytical expression
of E tr( , ), we expand the Laguerre polynomial as follows:
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Fig. 1. Normalized transverse intensity distributions of pulsed HGB at =z 15 m. (a)
=n 3, =T T2 0; (b) =n 3, =T T20 0.

Fig. 2. Normalized space-time intensity distribution. The parameters are: =z 10 m,
=T T2 0, =n 3, =C 0.250 .
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