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a b s t r a c t

An investigation is made of the phase properties, especially the Gouy phase of the tightly focused, cir-
cularly polarized vortex beams. First two groups of symmetry relations of the focused field are derived,
from which the effect of the topological charge on the field can be found easily. By decomposing the
electric field into three specific components, the corresponding Gouy phases are defined and their
properties are examined in detail. Our result shows that not only the polarization of the incident field or
the numerical aperture influence the phase behavior, but also the topological charge gives much con-
tribution to the phase structure near the focus.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The tightly focused light, for its wide applications, such as in
microscopy [1], in optical tweezers [2], has drawn substantial in-
terest recently [3–10]. It was originally studied by Richards and
Wolf [11] using a linearly polarized light as an incident field and is
well-known that the depolarization phenomenon occurs in such
systems. When tightly focusing a radially polarized beam, the
strong longitudinal component and small spot will be found
[12,13]. Carrying both spin angular momentum (SAM) and orbital
angular momentum (OAM), when a circularly polarized vortex
beam goes through a high numerical aperture (NA) lens, it can
induce the interconversion between the SAM and the OAM [14]
and has attracted attention in recent years [15–20].

The Gouy phase, which describes how the phase of a mono-
chromatic, focused field differs from that of a non-diffracted wave
with the same frequency, is ubiquitous in any focusing field (see
[21,22] for more information) and is of great importance in many
physical systems and applications, such as in optical coherence
tomography [23], in Terahertz time-domain spectroscopy [24] and
in optical calibration [25]. For a high NA system, it has been found
that the Gouy phases of the three Cartesian components of the
linearly polarized field exhibit different behaviors [8], and the
rotation of the polarization state of the radially polarized field in
the focal region is a manifestation of the different Gouy phases

that the two (longitudinal and radial) electric field components
undergo [10]. However, no detailed studies seem to have been
made on the Gouy phase of a tightly focused beam carrying both
SAM and OAM. So in this paper, we define and examine the Gouy
phase of a tightly focused, circularly polarized vortex beam and
discuss the variation of this phase anomaly on the influence of the
NA angle and the topological charge. From our deduced expres-
sions for the symmetry properties of the focused field and the
plots of the Gouy phase, it is easy to find the relations between the
phase structure of the field and the SAM (carried by the circular
polarization) as well as OAM (carried by the vortical phase) of the
beam. This investigation will provide insights in the fundamental
properties of the optical focused field and help our understanding
of the inter-transfer between SAM and OAM. Our result may have
implications for optical trapping [26] and singular microscopy
[27].

2. Focused, circularly polarized vortex field

Consider a circularly polarized vortex beam,

= ± ϕP eE r e e( )( i ) , (1)l r x y
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with m being the topological charge and ϕ being the azimuthal
angle. P r( ) is the axially symmetric amplitude distribution, here
we choose =P r( ) 1. 7 denotes left-handed circular polarization
(LCP) and right-handed circular polarization (RCP) respectively. A
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circularly polarized beam can be generated by the superposition of
two orthogonal linearly polarized beams with a retardation of π/2
between them, then a circularly polarized vortex beam can be
formed by adding a spiral phase wavefront on a circularly polar-
ized beam.

Assume an aplanatic, high numerical aperture focusing system
with semi-aperture angular α, see Fig. 1. When a circularly po-
larized vortex beam (from now on, we only consider the incident
wave of LCP) incident upon this system, the electric field in the
focal region at the observation point P can be expressed using the
Richards–Wolf vectorial diffraction model [11] as
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here A is a constant relating to the intensity of the beam and
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with Ji being the Bessel function of the first kind of order i and u, v
being dimensionless Lommel variables [28], namely

α=u kzsin , (6)2

ρ α=v k sin , (7)

where ω=k c/ , with c being the speed of light in vacuum, is the
wavenumber associated with frequency ω. Using the fact

− = = + +⁎I u v I u v n m m m( , ) ( , ) ( , 1, 2) (8)n n

where the asterisk denotes the complex conjugate, we can get the
following relations which exist between the components of the
field vectors at points ϕP u v( , , )1 and ϕ− −P u v( , , )2 , as
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then it can be obtained that

ϕ ϕ| − − | = | |e u v e u v( , , ) ( , , ) , (12)x x

ϕ ϕ| − − | = | |e u v e u v( , , ) ( , , ) , (13)y y
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and

ψ ϕ π ψ ϕ− − = + −u v m u v( , , ) ( 1) ( , , ), (15)x x
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here ψ =j x y z( , , )j denotes the phase of ej. It should be noted that
two sides of equations [Eqs. (15)–(17)] for the phase of the field are
indeterminate to the extent of an additive constant πN2 (N is any
integer).

In order to easily find the polarization difference between the
incident field and the focused field, it is convenient to decompose
the focused field into another three components: a component
with the same polarization (here it is LCP) and topological charge
as the incident field, a component with the opposite polarization
(RCP) and a topological charge of (mþ2), and a longitudinal (z-
axis) polarized part with a topological charge of (mþ1) [16] as
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The relations also hold between the components of the field vec-
tors at points ϕP u v( , , )1 and ϕ−P u v( , , )3 , which are symmetrically
situated with respect to the focal plane, can be derived as
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then we can get
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For m¼0, this is the case of a circularly polarized field (without
topological charge) and Eqs. (19)–(21) degenerate into

ϕ ϕ− = − ⁎e u v e u v( , , ) ( , , ), (28)l l
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which is exactly the symmetric form for the three components
(e e e, ,x y z) of a linearly polarized focused field [11]. From here on
we will concentrate on the phase behaviors of el, er and ez
components.

Fig. 1. Illustration of a high-numerical-aperture system. The origin O of a Cartesian
coordinate system is taken at the geometrical focus.
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