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a b s t r a c t

In this paper, the longitudinal optical conductivity in bilayer graphene was calculated analytically and
numerically. In addition to the quadratic terms in the effective-mass approximation Hamiltonian, the
linear term, which relates to the indirect interlayer coupling, was included. The nonparabolic energy
dispersion was obtained. Two intra- and inter-band transition channels for optical transition via carriers
absorbing the optical energy are observed. The inter-band transition offers the main contribution and is
almost a constant when the optical energy is larger than two times the Fermi energy. In the presence of
the complex energy and pseudospin angle relationship, doing the numerical integration to the
wavevector k, the contribution of the intra-band optical transition to the optical conductivity
(σ ω( )xx

intra ) is strengthened in the low optical energy region, while the analytical results with parabolic
energy curves contribute less to σ ω( )xx

intra . In addition, the optical conductivity also depends on the
electron density (or gate voltage) and the broadening width.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A single layer of graphite, called graphene, was fabricated in
2004 by Geim group [1]. Since then, due to its excellent properties,
such as abnormal quantum Hall effect [1], high mobilities [2],
Klein tuning [3], there are a lot of investigations on the optical and
electronic properties in the fields of condense matter physics and
material science [4–7]. The most distinctive feature of monolayer
graphene is the linear energy dispersion near the Dirac points,
which can be analogized as the relativistic massless particles. The
“isospin” originates from the two sublattice composition of elec-
tronic Bloch states. This linear energy spectrum at ′K K/ crossover
points leads to a series of unique properties, which are different
from those in traditional parabolic energy systems. The parabolic
energy spectrum is obtained by the 2�2 effective Hamiltonian in
bilayer graphene [8–10]. Through the angle-resolved photoelec-
tron spectroscopy (SRPES), the energy anisotropy was observed,
which can provide the information about the magnitude and sign
of interlayer coupling parameters in bilayer graphene [11]. Wang
et al. [12] considered an effective Hamiltonian with a mixture of
linear and quadratic terms of wavevector. The anisotropic energy

spectrum was obtained, which is different from the parabolic
energy curves. Therefore, in bilayer graphene, the optical and
electronic properties having both the similarities and differences
with those in monolayer graphene and the tradition 2DEG systems
can be anticipated.

The properties of the optical conductivity in graphene have
been widely investigated experimentally [13–16] and theoretically
[17–24]. The experimental value of the optical conductivity per
intrinsic graphene layer is almost a constant and close to e /(4 )2 ,
independent from the frequency and the interplane hopping when
the optical energy is larger than two times the Fermi energy E2 F .
Another phenomenon is that the optical sheet conductivity
showed a threshold structure at E2 F for different gate voltages
(carrier densities). In the theoretical calculation, the linear/para-
bolic energy dispersion is employed to investigate the optical
conductivity in monolayer/bilayer graphene respectively. In this
paper, we focus on the effect of the anisotropic energy spectrum
on the optical conductivity in bilayer graphene. Using the di-
electric function, the optical conductivity can be calculated and the
results are compared with those obtained by only parabolic energy
spectrum. Due to the optical measurement methods can offer the
potential for rapid and non-destructive characterization of large-
area samples. Therefore, the theoretical optical sheet conductivity
for graphene is a constant which indicates that the optical
measurements can be employed to determine the optical con-
stants and thicknesses of thin films.
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2. Theoretical approaches

In the presence of a weak external light field polarized along
the 2D plane (taken as the x direction) in graphene, the optical
conductivity can be derived from the Kubo formula [25–27], which
reads for the longitudinal optical conductivity:

∑σ ω ω Π ω= − ′→ ′

e q q( ) lim (1/ ) Im ( , ),
(1)

xx
q

n n
n n

2
0

2

,

where e and ω are the electron charge and the incident optical
frequency respectively. →q 0 reflects a fact that the electron–
photon scattering does not change the wavevector of an electron.

′n n( ) are the energy band indexes. Π ωq( , ) is the electron density–
density correlation function. Using Green's function method,
Π ωq( , ) is obtained by the definition of the density operator
[10,12]:

∑Π ω
Ω Γ

=
− ′

+ − ′ +′

′
+

+
q g g F q

f f

E E i
( , ) ( )

(2)
s v

s s

s s s s

s sk
k

k k q

k k q, ,

, , ,

, ,

where gs¼2 and gv¼2 are spin and valley degeneracy respectively.
fs k, is the Fermi–Dirac distribution function. ′ = ±s s, 1 applies to
the conduction band +( 1) and the valence band −( 1) respec-

tively. θ= − +E s k k k k k m2 cos 3 /(2 )s k,
2 2

0 0
2 , ≈m m0.033 e is the

effective mass of bilayer graphene which relates to the intralayer
coupling and direct interlayer coupling, with me being the free-
electron mass [12]. ≈k 10 / 30

8 −m 1 which relates to the indirect
interlayer coupling. θ the angle between k and q, ′ = +k k q.

ϕ ϕ= + ′ −′ +F q ss( ) [1 cos( )]s s
k k k q

, comes from the overlap of car-

rier states. ϕk is the argument of a complex −θ θ−ke k e( )i i2
0 . Γ is the

broadening width induced by the carrier scattering processes.
In the present study, gate voltage was used to tune the carrier

density and the electrons are occupied. The results of the optical
conductivity due to two transition channels (intra- and inter-band
transitions) can be obtained by the analytical and numerical
calculation, σ ω σ ω σ ω= +( ) ( ) ( )xx xx xx

intra inter .
If the indirect interlayer coupling is neglected (i.e., =k 00 ), the

energy dispersion becomes parabolic curves =E s k m/2s k,
2 2 . The

coefficient φ= + ′′F q ss( ) (1 cos(2 ))/2s s
k

, with φ θ= +k qcos ( cos )/

| + |k q . At a long-wavelength limit (i.e., →q 0), φ ≈ − qcos 1 ( /2

θk2 ) sin2 2 . δ− ≈ − · ^ −+ + + q kf f k k( )Fk k q, , . A finite value Γ was

taken for the broadening width. The intra-band transitions in a
conduction band give rise to the analytical optical conductivity
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Here, the superscript “A” indicates the analytical result with
parabolic energy dispersion. σ = e /(2 )bi

0 2 which is two times larger
than the value of e /(4 )2 in mono-layer graphene. The contribution
to the optical conductivity from intra-band transition depends on
the broadening width, Fermi energy, and the incident optical
energy.

The inter-band transition (i.e., ′ = −s s) refers to the electron
transition from the valence band to the conduction band:
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Here, ω Γ= − +R k m( / )2 2 2 2, and kc is the cutoff wave vector for
graphene, ∼k a1/c with ≈a 1.42 Å being the carbon–carbon

distance. When
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3. Results and discussions

In this paper, we present the analytical and numerical results
for the optical conductivity in bilayer graphene at a low-tempera-
ture limit →T 0 K. In our calculations, we consider that the carriers
are electrons which can be tuned by the gate voltage. The typical
sample electron density ≈ −n 10 cme

12 2 was taken. In the numer-
ical calculation, the small wavevector during the electron–photon
scattering process, =q k0.01 F .

Fig. 1 shows the parabolic energy dispersion and the aniso-
tropic energy spectrum as a function of the wavevector. An
obvious feature is the Fermi wavevector. The Fermi wavevector

π= =k n g g mE4 / 2 /F e s v F for the parabolic energy curve, which
satisfies the rotational symmetry of angle θ. While the wavevector
takes a different value corresponding to a different angle θ with a
linear term included in an effective Hamiltonian. In this case, at a
given Fermi energy, the minimum and maximum values of the

wavevector are respectively = + −k mE k k2 / ( /2) /2F
min

F
2

0
2

0 and

= + +k mE k k2 / ( /2) /2F
max

F
2

0
2

0 above the characteristic energy

= =E k m/(2 ) 3.9 meV2
0
2 . For example, when the Fermi energy

EF¼36.271 meV, the Fermi wave vector = × −k 1.7725 10 cmF
6 1 and

the electron density = −n 10 cme
12 2 for the parabolic case. =kF

min

× −1.5071 10 cm6 1 , and = × −k 2.0845 10 cmF
max 6 1 for the nonpara-

bolic case. When EF¼7.2542 meV, = × −k 0.79267 10 cmF
6 1,

= × −n 0.2 10 cme
12 2 for the parabolic case, = ×k 0.55492F

min

−10 cm6 1 and = × −k 1.1323 10 cmF
max 6 1 for the nonparabolic case.

It should be noted that when the Fermi energy is given, the
occupied carrier density is different for both parabolic and non-
parabolic cases. In this paper, the Fermi energy is chosen to be a
fixed value.

Figs. 2 and 3 show the analytical and numerical results for the
optical conductivity respectively. From the figures, it is clearly
shown that, (1) in the low energy region (or in the long-
wavelength region), the optical conductivity is mainly contributed
by the intra-band optical transition process. While in the high
energy region (especially the optical energy is larger than E2 F ), the

Fig. 1. The energy spectrum for equally separated θ from 0 to π/3. The curves for
θ π π π= 0, /9, 2 /9, /3 are denoted by solid, dashed, dotted, dash-dotted lines. The
parabolic energy dispersion is drawn by line-symbol −•−. The horizontal lines
indicate the Fermi energy at EF¼36.271 and 7.2542 meV.
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