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a b s t r a c t

The large phase shift of strongly nonlocal spatial optical soliton (SNSOS) in the (1þ1)-dimensional
[(1þ1)D] lead glass is investigated using the perturbation method. The fundamental soliton solution of
the nonlocal nonlinear Schödinger equation (NNLSE) under the 2nd order approximation in strongly
nonlocal case is obtained. It is found that the phase shift rate along the propagation direction of such
soliton is proportional to the degree of nonlocality, which indicates that one can realize π-phase-shift
within one Rayleigh distance in (1þ1)D lead glass. A full comprehension of the nonlocality enhancement
to the phase shift rate of SNSOS is reached via quantitative comparisons of phase shift rates in different
nonlocal systems. This can help us to conclude that, compared with SNSOSs in other nonlocal systems,
SNSOS in (1þ1)D lead glass is a most promising candidate which can experience large phase shift within
the shortest propagation distance.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlocal spatial solitons have been the subject of intensive
experimental and theoretical work [1–5] since the pioneering
work done by Snyder and Mitchell [6]. The most prominent in-
novation in their work is that they transform the complex nonlocal
nonlinear Schödinger equation (NNLSE) into a simple case of linear
propagation of light in a quadratic self-induced index well [6].
Nonlocal nonlinearity is typically the result of certain transport
processes, such as the charge drift in photorefractive crystals [7]
and the heat transfer in thermal nonlinear media [3] or, long-
range interaction, such as the molecular reorientations in liquid
crystals [8]. There is also a huge class of parametric nonlinearities
involving nonlocality, such as quadratic nonlinear materials [9],
which has, e.g., enabled the prediction of good regimes for quad-
ratic soliton pulse compression [10,11]. Another important class of
materials, called liquid infiltrated photonic crystal fibers, displays
an engineerable spatial nonlocality. They allow to engineer the
dispersion, the nonlinearity, and the nonlocality [12] and thereby
enabled the first observation of a (2þ1)D nonlocal gap soliton
[13]. Due to the nature of the nonlocality, solitons in nonlocal
nonlinear media exhibit several distinct properties that are not
possible in local settings. This includes, on one hand, resulting
from the spatial ‘averaging’ character of the nonlocality, the arrest
of catastrophic collapse [4], the ability to support the formation of

complex optical spatial solitons, such as higher-order solitons
[14,15] and vortex solitons [3,16]. On the other hand, out-of-phase
solitons attraction between bright [17,18] and dark solitons
[19,20], long-range interactions between solitons [5,21] as well as
the solitons and the boundaries [22–25] in strongly nonlocal
media have also been carried out or predicted due to the fact that
the interactions are mediated by the light-induced refractive index
which is ‘enlarged’ by the nonlocal response.

Except for the ‘averaging’ and the ‘enlarging’ features of the
nonlocality, there exists an ‘enhancing’ effect of the nonlocality on
the phase shift of the SNSOS. Although very large in fact, the phase
shift of SNSOS is considered a trivial term, for a long time, and is
neglected by the Snyder–Mitchell (SM) model [6]. The first work
focused on the phase shift of SNSOS was done by Guo et al. [26,27].
They predicted a large phase shift rate of SNSOS, which is ρ2 times
(ρ is the degree of nonlocality defined as ρ μ= w /m where wm is the
characteristic length of the response function and μ is the beam
width), explicitly 100 times for the lower limit of the strongly
nonlocality, larger than that of the local counterpart. Guo's con-
clusion results from a strongly nonlocal (SN) model in which the
large phase shift is included having a dominating term propor-
tional to the soliton critical power.

SN model can rigorously transform to SM model with a func-
tion transformation involving large phase shift term [28]. Both of
them are derived from a phenomenological and regular (or at least
twice-differentiable at r¼0) response function R r( ). In the nematic
liquid crystal (NLC) and lead glass (LG), the two media in which
SNSOSs can form, the response functions are singular at every
source point (irregular) and therefore one cannot obtain accurate
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solution of NNLSE based on SN model and SM model even in the
strongly nonlocal case [28]. Ouyang et al. took the higher order
(the fourth and the sixth) terms of the light induced refractive
index as the perturbation to the quadratic index well and obtained
considerably accurate analytical soliton solutions in (1þ1)D [29]
and (1þ2)D [30] NLC. The perturbation solution are different from
Gaussian-type solution given by SN model [28], but still indicated
nonlocality-enhanced large phase shifts of SNSOSs. The first the-
oretical and experimental study focused on the SNSOS phase shift
was carried out in (1þ2)D cylindrical LG by Shou et al. [31]. They
retained the terms of the Taylor expansion of the light-induced
refractive index up to the 2nd order whose coefficient is the on-
axis light intensity. The phase shift rate in (1þ2)D LG was pre-
dicted to be much smaller than the result based on SN model, but
is still more than one order larger than that in the local media.
More meaningfully, Shou et al. observed a linear modulation of the
soliton power on the phase shift of the SNSOS [31], which coin-
cides with Guo's prediction, indicating that the nonlocality en-
hancement to the phase shift of SNSOS stems from the fact that
the light-induced refractive index, which directly contributes to
the phase shift, is induced not by the light intensity but by the
power of the whole beam.

In this paper, we investigate the phase shift of SNSOS in (1þ1)
D LG in the formalism of perturbation theory. The perturbation
solution of the fundamental soliton is obtained under the 2nd
order approximation. The result indicates that the phase shift of
SNSOS in (1þ1)D LG is proportional to the degree of nonlocality
which is at least one order larger than the result for the local so-
litons. It will also be shown how the degree of nonlocality affects,
or explicitly speaking, enhances the phase shift rate in different
nonlocal systems.

2. The fundamental strongly nonlocal soliton solution under
the 2nd order approximation

We consider a (1þ1)D LG with thermal nonlocal nonlinear
response occupying the region − ≤ ≤L x L. The propagation beha-
vior of a light beam u propagating along the z axis is governed by
the NNLSE, coupled to the Poisson equation describing the light-
induced nonlinear refractive index variation N:

∂
∂

+ ∂
∂

+ =i
u
z

u
x

Nu
1
2

0,
(1)

2

2

= − | |d N
dx

u .
(2)

2

2
2

The nonlocal response function in (1þ1)D LG under the first-kind
boundary condition ± =N L( ) 0 can be given as [32]
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where x and ξ are, respectively, the field point and the source
point. Green's function ξG x( , ) can be normalized through an in-
tegral over x, which is ξ ξ− +L L( )( )/2. ξ generally takes the value
around the center of the cross section of the glass but cannot take
the value of ±L. This is required by the boundary condition of the
refractive index N making the integral nonzero. According to the
Green function method, the nonlinear refractive index in LG can be

written in the form of

∫ ξ ξ ξ= − | |
−

N x G x u z d( ) ( , ) ( , ) . (4)L
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It is obvious that the response function in Eq. (3) is not differ-
entiable at the source point ξ=x (irregular) and therefore cannot
be dealt with SN model [26]. We use the perturbation method,
previously extended to solve the NNLSE by Ouyang et al. [29,30], to
calculate the fundamental soliton solution of the NNLSE. For the
soliton state u x z( , ), we have | − | = | |u x z u x z( , ) ( , )2 2 and

=u x z u x( , ) ( , 0). On the analogy of the potential in quantum me-
chanics which determines the state of the particle movement, we
define the nonlinearity-induced trapping ‘potential’, explicitly the
light-induced refractive index, which can determine the beam
propagation behavior:
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The minus sign indicates that a refractive index distribution with a
maximum in its center corresponds to a light induced potential
distribution with a minimum in its center. Then Eq. (1) can be
reduced to
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Taking Taylor's expansion of V(x) at x¼0, we obtain
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For Taylor's expansion to be valid, the variable x in Taylor's
expansion of V(x) must take the value in proximity of the light
field μ∼( ) where V(x) contributes to the field phase shift. Conse-
quently the terms αx4 and βx6 are, respectively, one and two orders
of magnitude smaller than the term μx /(2 )2 4 [29] and then can be
viewed as the perturbations. By substituting Eq. (7) into Eq. (6)
and neglecting the higher-order terms, we obtain
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Taking a transformation

ϕ ε= − +u x z x i V z( , ) ( ) exp[ ( ) ], (10)n n 0

we arrive at
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here = …n 0, 1, 2, is the order of the soliton solution, in particular
n¼0 corresponding to the fundamental soliton solution and n¼1
corresponding to the 2nd order soliton solution and so on. If α¼0
and β¼0, Eq. (11) reduces to the well-known stationary Schrö-
dinger equation for a harmonic oscillator. Following the
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