Generation of three-qutrit singlet states for three atoms trapped in separated cavities

Rong-Can Yang*, Xiu Lin, Xiu-Min Lin
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350007, China

ARTICLE INFO

Article history:

Received 25 June 2014
Received in revised form
27 October 2014
Accepted 29 October 2014
Available online 7 November 2014
Keywords:
Singlet states
Fiber-coupled cavities
Quantum Zeno dynamics
Adiabatic passage

Abstract

Based on quantum Zeno dynamics and adiabatic passage, a scheme for the generation of three-qutrit singlet states for three atoms distributed in three fiber-coupled cavities is proposed, which is insensitive to the fluctuation of atom-cavity coupling rate g and fiber-cavity coupling rate ν when $\nu \geq g$. Moreover, the influence of atomic spontaneous emission and photon loss on the fidelity is greatly reduced since there are no excitations for atoms, cavities, and fibers. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement, a most significant resource for quantum information processing (QIP), is a distinctive feature of quantum mechanics [1]. Nowadays, there is much attention focused on high-dimensional entanglement, which offers larger vibrations of nonlocality via Bell tests [2], has applications in increased-security quantum cryptography [3], and so on. A special type of high-dimensional entanglement called N-particle N-dimensional singlet states with the form
$\left|S_{N}\right\rangle=\frac{1}{N!} \sum_{\text {permutations of } 01 \cdots(N-1)}(-1)^{t}|i j \cdots n\rangle$
was discovered by Cabello [4]. Here, t is the number of transpositions of pairs of elements that must be composed to place elements in canonical order (i.e., $0,1,2, \ldots, N-1$). It has been proved that the total spin of $\left|S_{N}\right\rangle$ equals zero, which makes it possible not only to construct decoherence-free subspaces (DFS) [5], but also to solve " N-strangers", "secret sharing", and "liar detection" problems [6]. Taken into account these advantages, some proposals have been presented for the preparation of $\left|S_{N}\right\rangle$ [7-11]. However, most of them require atoms (ions) interacting with a cavity (vibrational mode), which results in a very short distance among particles.

[^0]A fiber-coupled-cavity system is viewed as one of potential candidates for the implementation of long-distance quantum communication and distributed quantum computation. The reason is that in this configuration the qubits can be manipulated easily [12]. Now there have been several potential techniques demonstrated for experimentally implementing this framework [13,14]. Based on these techniques, some protocols for quantum state preparation and distributed quantum computation have been presented [15-19]. However, it is still a challenge to construct a large-scale architecture for quantum networks under different dissipation sources such as atomic spontaneous emissions and photon loss $[20,21]$. Luckily, these problems may be solved by a method called quantum Zeno dynamics (QZD) which stems from quantum Zeno effect [22]. It is proved that QZD can guide a quantum-state evolution within a "Zeno subspace" defined by measurement $[23,24]$. By means of this method, many proposals are designed to protect quantum systems against dissipation. For instance, a robust atomic entanglement preparation and a distributed CNOT gate in two coupled cavities have been proposed [25,26]. However, both schemes require exactly controlling pulse sequences and interaction time. Luckily, the restriction may be loosened with adiabatic-passage technology [27,28].

In this paper we propose an alternative scheme for the preparation of three-qutrit singlet states for three atoms distributed in three fiber-coupled cavities via QZD and adiabatic passage. It has the following significant advantages: (i) each atom can be manipulated easily; (ii) pulse sequences, interaction time, and atom-cavity (fiber-cavity) coupling rates do not need to be exactly
controlled; (iii) the effect of atomic spontaneous emission and photon loss on the fidelity is reduced.

2. Preparation of three-atom singlet states

Consider three atoms 1,2 , and 3 each having an excited state $\left|e_{0}\right\rangle$ and three ground states $\left|g_{L}\right\rangle,\left|g_{0}\right\rangle$, and $\left|g_{R}\right\rangle$ are respectively trapped in three two-mode cavities 1, 2, and 3, as shown in Fig. 1. Cavities 1, 2 and 3 are resonantly connected by a short optical fiber 1 or 2. In the k th cavity, the atomic transition $\left|g_{L}\right\rangle_{k} \leftrightarrow\left|e_{0}\right\rangle_{k}\left(\left|g_{R}\right\rangle_{k} \leftrightarrow\left|e_{0}\right\rangle_{k}\right)$ for the k th atom is resonantly coupled to the left-circular (right-circular) polarization mode with coupling rate $g_{L k}\left(g_{R k}\right)$, while the transition $\left|g_{0}\right\rangle_{k} \leftrightarrow\left|e_{0}\right\rangle_{k}$ is resonantly driven by a π pulse with time-dependent coupled rate $\Omega_{k}(t)$. In the short-fiber limit $L \lambda / 2 \pi c \ll 1$ with L the fiber length, c the speed of light, and λ the decay rate of the cavity field into a continuum of fiber modes, only the resonant fiber modes with left-circular or right-circular polarizations interact with corresponding cavity modes [12]. Then in the resolved sideband and under the rotatingwave approximation, the interaction Hamiltonian for the atom-cavity-fiber system reads

$$
\begin{align*}
H_{I}= & \sum_{k=1}^{3} \Omega_{k}(t)\left|e_{0}\right\rangle_{k}\left\langle g_{0}\right|+\sum_{j=L, R} \sum_{k=1}^{3} g_{j k}\left|e_{0}\right\rangle_{k}\left\langle g_{j}\right| a_{j k} \\
& +\sum_{j=L, R} \nu_{j 1} a_{j 1} b_{j 1}^{+}+\nu_{j 2} a_{j 2} b_{j 1}^{+}+\nu_{j 3} a_{j 1} b_{j 2}^{+}+\nu_{j 4} a_{j 3} b_{j 2}^{+}+\text {H. c. } \tag{2}
\end{align*}
$$

where the subscript $j(j=L, R)$ represents j ($j=$ left, right)-circular polarization mode for cavities or fibers, $k(k=1,2,3)$ indicates the k th atom or cavity, $a\left(a^{+}\right)$and $b\left(b^{+}\right)$are the annihilation (creation) operators for cavities and fiber modes, respectively; and $\nu_{j m}(j=L, R ; m=1,2,3,4)$ is the coupling strength between a fiber and the corresponding cavity. The state of three cavities (two fibers) containing $x, y, z(\alpha, \beta)$ photons is denoted as $|x, y, z\rangle_{a_{1} a_{2} a_{3}}\left(|\alpha, \beta\rangle_{b_{1} b_{2}}\right)(x, y, z, \alpha, \beta=0, L, R) \quad$ with $\quad\{|1\rangle,|2\rangle, \cdots,|25\rangle\}$ representing the vacuum state, $|1\rangle=\left|e_{0} g_{L} g_{R}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}$ represents only one left (right)-circularly polarized photon but nothing for right (left)-circularly polarized photons.

For the sake of simplicity, all the atom-cavity coupling rates and fiber-cavity coupling rates are respectively set to be equal, i.e., $g_{j k}=g(j=L, R ; \quad k=1,2,3)$ and $\nu_{j m}=\nu(j=L, R ; m=1,2,3,4)$.
a

Fig. 1. (color online) (a) Sketch for atomic level configurations and transitions. (b) Diagram for preparing three-atom. singlet states. Three atoms are trapped in three spatially separated cavities 1,2 , and 3 , respectively. Cavities 1 and 2 (3) are linked through the optical fiber 1 (2).

Then in the symmetrical subspace $\{|1\rangle,|2\rangle, \cdots,|25\rangle\}$ with

$$
\begin{align*}
& |1\rangle=\left|e_{0} g_{L} g_{R}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |2\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{L} g_{R}\right\rangle_{123}|L 00\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{R}\right\rangle_{123}|R 00\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |3\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{L} g_{R}\right\rangle_{123}|0 L\rangle_{b_{1} b_{2}}+\left|g_{R} g_{L} g_{R}\right\rangle_{123}|R 0\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |4\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{L} g_{R}\right\rangle_{123}|00 L\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{R}\right\rangle_{123}|0 R 0\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |5\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{L} g_{R}\right\rangle_{123}|L 0\rangle_{b_{1} b_{2}}+\left|g_{R} g_{L} g_{R}\right\rangle_{123}|0 R\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |6\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{L} g_{R}\right\rangle_{123}|0 L 0\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{R}\right\rangle_{123}|00 R\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |7\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} e_{0} g_{R}\right\rangle_{123}+\left|g_{R} g_{L} e_{0}\right\rangle_{123}\right)|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |8\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{R}\right\rangle_{123}|0 R 0\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{L}\right\rangle_{123}|00 L\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |9\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{R}\right\rangle_{123}|R 0\rangle_{b_{1} b_{2}}+\left|g_{R} g_{L} g_{L}\right\rangle_{123}|0 L\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |10\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{R}\right\rangle_{123}|R 00\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{L}\right\rangle_{123}|L 00\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |11\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{R}\right\rangle_{123}|0 R\rangle_{b_{1} b_{2}}+\left|g_{R} g_{L} g_{L}\right\rangle_{123}|L 0\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |12\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{R}\right\rangle_{123}|00 R\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{L} g_{L}\right\rangle_{123}|0 L 0\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |13\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} e_{0}\right\rangle_{123}+\left|g_{R} e_{0} g_{L}\right\rangle_{123}\right)|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |14\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{L}\right\rangle_{123}|00 L\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{R} g_{L}\right\rangle_{123}|0 R 0\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |15\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{L}\right\rangle_{123}|0 L\rangle_{b_{1} b_{2}}+\left|g_{R} g_{R} g_{L}\right\rangle_{123}|R 0\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |16\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{L}\right\rangle_{123}|L 00\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{R} g_{L}\right\rangle_{123}|R 00\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |17\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{L}\right\rangle_{123}|L 0\rangle_{b_{1} b_{2}}+\left|g_{R} g_{R} g_{L}\right\rangle_{123}|0 R\rangle_{b_{1} b_{2}}\right)|000\rangle_{a_{1} a_{2} a_{3}}, \\
& |18\rangle=\frac{1}{\sqrt{2}}\left(\left|g_{L} g_{R} g_{L}\right\rangle_{123}|0 L 0\rangle_{a_{1} a_{2} a_{3}}+\left|g_{R} g_{R} g_{L}\right\rangle_{123}|00 R\rangle_{a_{1} a_{2} a_{3}}\right)|00\rangle_{b_{1} b_{2}}, \\
& |19\rangle=\left|e_{0} g_{R} g_{L}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |20\rangle=\left|g_{0} g_{L} g_{R}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |21\rangle=\left|g_{L} g_{0} g_{R}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |22\rangle=\left|g_{R} g_{L} g_{0}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |23\rangle=\left|g_{L} g_{R} g_{0}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |24\rangle=\left|g_{R} g_{0} g_{L}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \\
& |25\rangle=\left|g_{0} g_{R} g_{L}\right\rangle_{123}|000\rangle_{a_{1} a_{2} a_{3}}|00\rangle_{b_{1} b_{2}}, \tag{3}
\end{align*}
$$

the interaction Hamiltonian described in Eq. (2) reduces to

$$
\begin{align*}
& H_{l}^{\prime}=H_{a l}+H_{a c b} \\
& H_{a l}=\frac{1}{\sqrt{2}}\left[\sqrt{2} \Omega_{1}(t)|20\rangle\langle 1|+\sqrt{2} \Omega_{1}(t)|25\rangle\langle 19|\right. \\
& \left.+\Omega_{2}(t)|21\rangle\langle 7|+\Omega_{2}(t)|24\rangle\langle 13|+\Omega_{3}(t)|22\rangle\langle 7|+\Omega_{3}(t)|23\rangle\langle 13|\right] \\
& +H . c . H_{a c b}=\sqrt{2} g|1\rangle\langle 2|+\nu(|2\rangle\langle 3|+|3\rangle\langle 4|+|2\rangle\langle 5|+|5\rangle\langle 6|) \\
& +g(|6\rangle\langle 7|+|7\rangle\langle 8|)+\nu(|8\rangle\langle 9|+|9\rangle\langle 10|+|10\rangle\langle 11|+|11\rangle\langle 12|) \\
& +g(|12\rangle\langle 13|+|13\rangle\langle 14|)+\nu(|14\rangle\langle 15|+|15\rangle\langle 16|+|16\rangle\langle 17| \\
& +|17\rangle\langle 18|)+\sqrt{2} g|16\rangle\langle 19|+H . c . \tag{4}
\end{align*}
$$

https://daneshyari.com/en/article/1534417

Download Persian Version:

https://daneshyari.com/article/1534417

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: rcyang@fjnu.edu.cn (R.-C. Yang).

