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a b s t r a c t

A class of Airy accelerating beams with non-parabolic trajectories are derived by means of a novel
application of a conformal transformation originally due to Bateman. It is also shown that the salient
features of these beams are very simply incorporated in a solution which is derived by applying a
conventional conformal transformation together with a Galilean translation to the basic accelerating
Airy beam solution of the two-dimensional paraxial equation. Motivation for the non-parabolic beam
trajectories is provided and the effects of finite-energy requirements are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the two-dimensional (2D) paraxial
equation
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written in terms of the dimensionless transverse variable ξ¼ x=x0
and the normalized range s¼ z=ðkx2oÞ, is satisfied by the expression

gðξ; sÞ ¼ exp½isðs2�6ξÞ=12�Aiðξ�s2=4Þ; ð2Þ
where AiðU Þ denotes the Airy function. This is a variant of the
infinite-energy nonspreading Airy wavepacket solution first
reported by Berry and Balazs [1] in the context of quantum
mechanics. One of the salient characteristic properties is the
parabolic trajectory of its main lobe as it propagates along the s
direction.

The first study of Airy beam solutions to Eq. (1) characterized by
non-parabolic trajectories was undertaken by Torre [2,3]. Exploiting
the Lie symmetry group properties of the time-dependent
Schr €odinger equation, she obtained the infinite-energy beam
solution
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where λ0 and a are free parameters. Another relevant accelerating
Airy beam solution, also due to Torre, is given by
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where ξ0 and a are free parameters. The Airy part of this solution
can be written out explicitly as follows:
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For very large values of the parameter ξ0; the trajectory of the beam
is parabolic. Deviations from a parabolic path of the beammain lobe
occur for small values of ξ0:

In a recent paper, Yan et al. [4] showed that the two-
dimensional (2D) paraxial Eq. (1) has the solution
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Here, a and b are free parameters. The authors noted that “since
[in the argument of the Airy function] αðsÞ is the sum of two
functions: α1ðsÞ ¼ a3=½2ðaþsÞ��a2=2 and α2ðsÞ ¼ bs; the accelerat-
ing behavior of the beam is determined by the two functions. The
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functional forms of the two functions imply that at small distance
of propagation, the beam has the accelerating trajectory given by
the former, while, at very large distance, the accelerating is
dominated by the latter.” This is, essentially, the main result of
the article; that the beam given in Eqs. (5a) and (5b) is character-
ized by a non-parabolic trajectory, compared to the basic accel-
erating Airy beam solution given in Eq. (2). It should be pointed
out that this solution extends the Torre beam solution in Eq. (3),
which preceded it. However, the method used by Yan et al. [4] can
yield other types of solutions.

The goal in this article is twofold: (a) to obtain an extension
of the beam solution given in Eqs. (5a) and (5b); (b) to derive a
new beam solution to the 2D paraxial equation which contains
several of the salient features regarding the non-parabolic nature
of the trajectories. The approach toward this end will be different
from the method used by Yan et al. [4]. Specifically, for case (a)
a Bateman and for case (b) a conventional conformal transforma-
tion and subsequently a Galilean translation will be applied to the
basic accelerating Airy solution. Since, however, both the Airy
solution in Eq. (2) and the beam solution in Eqs. (5a) and (5b)
contain infinite energy, the finite-energy accelerating Airy beam
solution [5]

gκðξ; sÞ ¼ exp½� ið2κþ isÞðs2�6ξþ2κ2�4isκÞ=12�Aiðξ�s2=4þ iκsÞ;
ð6Þ

with κ a positive parameter, will be used instead. An additional
purpose for this article is to provide motivation for the non-
parabolic trajectory of the beam in Eqs. (5), as well as those
derived by Torre, and discuss the changes that occur when
normalizability is imposed.

2. A finite-energy extension of the Yan et al. accelerating Airy
beam solution

In terms of the characteristic variables ς¼ s�τ; η¼ sþτ; the
wavefunction

uðξ; ς;ηÞ ¼ expðiη=2Þgκðξ; ςÞ ð7Þ

obeys the non-dimensionalized homogeneous scalar wave equa-
tion
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In 1910, Bateman [6,7] discovered a transformation, more
general than a conformal change of the metric, which could be
used to transform solutions of Maxwell's equations into similar
ones. In the case of the scalar wave equation, in particular, the

Bateman transformation assumes the form
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with A a free parameter. The function u1ðξ; ς;ηÞ also obeys the
scalar wave Eq. (8). It is not well known that this new wavefunc-
tion leads to a new solution of the 2D paraxial Eq. (1) as follows:

ϕðξ; sÞ ¼ u1ðξ; s=A;0Þ: ð10Þ
In order to achieve the goal of extending the beam solution in

Eqs. (5a) and (5b), a conventional Galilean transformation is
carried out next; specifically,
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where v is a free parameter. With the additional translations
s-sþa; ξ-ξþa2=2; the extended solution f eðξ; sÞ can be written
out explicitly as follows:

f eðξ; sÞ ¼
1

ð1þs=aÞ1=2
exp½iΦð1Þ

e ðξ; sÞ�exp½�Φð2Þ
e ðξ; sÞ�

�Ai
Aðξ�A3=ð4ðsþaÞÞ�ðv=2Þsþða2=2Þ� iAκÞ

sþa

" #
; ð12aÞ

Φð1Þ
e ðξ; sÞ ¼ 1

12
3vϕ1þ

A2ðA4þðsþaÞð�3Aϕ2þðð3ðsþaÞϕ2
2Þ=2A2ÞÞÞ

ðsþaÞ3

" #
;

Φð2Þ
e ðξ; sÞ ¼

κ 3A2�3AðsþaÞϕ2þðsþaÞ2κ2
h i

6ðsþaÞ3
þ i

A2κ
2ðsþaÞ2

;

ϕ1 ¼ a2�vs
2
þ2ξ; ϕ2 ¼ a2�vsþ2ξ: ð12bÞ

The factor Φð2Þ
e ðξ; sÞ in the second exponent in Eq. (12a) is due

solely to the incorporation of finite energy in the beam.
A comparison of the arguments of the Airy functions in Eqs. (5)
and (12a) shows that f eðξ; sÞ reduces to f ðξ; sÞ if A¼ 21=3a and v¼ 2b
in the case of infinite energy beams ðκ ¼ 0Þ. The procedure leading to
the extended beam solution in Eqs. (12a) and (12b) makes clear that
the terms A3ðsþaÞ�1=4 and vs=2 in Eq. (12a) and, in particular,
a3ðsþaÞ�1=2 and bs in Eqs. (5a) and (5b) are due to a conformal
transformation and a Galilean translation, respectively.

The effects of finite energy present in the beam solution f eðξ; sÞ
are illustrated in Fig. 1 below, where a comparison is made with
the beam solution in Eq. (5).

The parameters A and v in Eqs. (12a) and (12b) have been
chosen so that the two beam solutions are identical for κ ¼ 0: A
plot of f ðξ; sÞ

		 		2 is shown in Fig. 1a. The main lobe of the beam
follows a non-parabolic path, its amplitude decreases monotoni-
cally as the range s increases, and its width increases. Fig. 1b shows
a plot of f eðξ; sÞ

		 		2 with κ ¼ 2� 10�2. The main lobe of the beam
follows a non-parabolic trajectory which essentially is identical to
that shown in Fig. 1a. However, a focusing effect is exhibited in this

Fig. 1. (a) f ðξ; sÞ
		 		2 with a¼ 10 and b¼ 3; (b) f eðξ; sÞ

		 		2 with a¼ 10, A¼ 21=3a, v¼ 6 and κ¼ 2� 10�2 :
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