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a b s t r a c t

In the past decades, both the increasing experimental evidences and some results of theoretical
investigation on non-Kolmogorov turbulence have been reported. This has prompted the study of
optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, using a non-Kolmogorov
power spectrum which owns a generalized power law instead of standard Kolmogorov power law value
11/3 and a generalized amplitude factor instead of constant value 0.033, the fiber-coupling efficiency of
plane and spherical waves are derived for horizontal link in weak turbulence. The analytic expressions
are obtained and then used to analyze the effect of spectral power-law variations on the fiber-coupling
efficiency. It is anticipated that this work is helpful to the investigations of atmospheric turbulence and
optical wave propagation in the atmospheric turbulence.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that atmospheric turbulence severely
degrades the performance of imaging and laser systems [1–3].
For a long time, the Kolmogorov model for atmospheric turbulence
has been widely applied to estimate the performance of imaging
and laser systems operating in the atmosphere, which has been
confirmed by numerous experimental evidences.

Despite the success of the Kolmogorov model, recently both the
experimental data [4–8] and the theoretical investigations [9–12]
have shown that it is not the only possible turbulent one in the
atmosphere. This has prompted the scientist community to
research optical propagation in non-Kolmogorov atmospheric
turbulence. Beland developed the expressions of log-amplitude
variance and the coherence length for optical wave propagating
through weak isotropic non-Kolmogorov turbulence [13]. Stribling
et al. analyzed the wave structure function and the Strehl ratio as
the refractive-index fluctuations deviated from Kolmogorov
statistics [14]. Boreman and Dainty studied the expressions of
non-Kolmogorov turbulence in the light of Zernike polynomials
[15]. Gurvich and Belen’kii introduced a model for the power
spectrum of stratospheric non-Kolmogorov turbulence and inves-
tigated the stratospheric turbulence on the scintillation and the
coherence of starlight and on the degradation of star image [16].
Belen’kii studied the influence of the stratosphere on star image
motion again based on the model for the power spectrum of

stratosphere [17]. Toselli et al. introduced a non-Kolmogorov
theoretical power spectrum model and analyzed long term beam
spread, scintillation index, probability of fade, mean SNR, and
mean BER as variations of the spectrum exponent for horizontal
link [18]. And then they analyzed the angle-of-arrival fluctuations
for free space laser beam again [19]. Baykal et al. found the
equivalence of the structure constants in non-Kolmogorov and
Kolmogorov spectra in a turbulent atmosphere [20]. Chen et al.
developed the expressions of temporal averaged pulse intensity for
optical pulses propagating through non-Kolmogorov turbulence
under the strong fluctuation conditions and the narrow-band
assumption [21]. Recently, with some components developed for
fiber-optic communication systems, such as transmitter and recei-
ver modules, erbium-doped fiber amplifiers (EDFAs), used in high-
speed free space optical communication links, the fiber-coupling
efficiency becomes more and more important. Ruilier derived an
analytical expression of the coupling efficiency for the monochro-
matic case, and the effect of purely static aberrations was consid-
ered [22]. Dikmelik et al. numerically evaluated the fiber-coupling
efficiency for laser light distorted by horizontal Kolmogorov turbu-
lence [23]. Hideki et al. measured the fiber-coupling efficiency for
satellite-to-ground atmospheric laser downlinks in their experiment
[24]. However, the fiber-coupling efficiency for plane and spherical
waves through non-Kolmogorov turbulence were not discussed in
their paper.

In this paper, we consider a non-Kolmogorov theoretical power
spectrum for the refractive-index fluctuations [19], which obeys a
more general power law that takes all the values between the range
3 to 4. When the power law is set to the standard Kolmogorov value
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11/3, the spectrum reduces to the conventional Kolmogorov one.
Using this spectrum, the fiber-coupling efficiency of plane and
spherical waves have been developed for horizontal link in weak
turbulence, and then the effect of spectral power-law variations on
the fiber-coupling efficiency has been analyzed.

2. Non-Kolmogorov spectrum

For the purpose of this paper, a theoretical power spectrum
model that describes non-Kolmogorov optical turbulence is
considered [19], which obeys a more general power law and in
which the power-law exponents can take all the values ranging
from 3 to 4,

Φnðκ; αÞ ¼ AðαÞ ~C2
n
expð�κ2=κ2mÞ
ðκ2þκ20Þα=2

; 0rκo1; 3oαo4; ð1Þ

where κ is the magnitude of three dimensional wave number
vector (in units of rad/m), α is the spectrum power-law exponent,
~C
2
n is a generalized refractive-index structure parameter (in units

of m3�α) that describes the strength of the turbulence along the
path, and A(α) is a function defined by

AðαÞ ¼ 1
4π2

Γðα�1Þ cos απ

2

� �
; ð2Þ

where the symbol Γ(x) represents the gamma function, and
κ0 ¼ 2π=L0, L0 is the outer scale parameter, κm ¼ c ðαÞ=l0, l0 is the
inner scale parameter and cðαÞ ¼ ½Γðð5�αÞ=2ÞAðαÞ ð2=3Þπ�1=α�5.

When the power law α is equal to 11/3, A(11/3)¼0.033, ~C
2
n ¼ C2

n,
and the spectrum reduces to the conventional von Kármán
spectrum for Kolmogorov turbulence [25],

ΦnðκÞ ¼ 0:033C2
n
expð�κ2=κ2mÞ
ðκ2þκ20Þ11=6

; ð3Þ

where C2
n represents the conventional refractive-index structure

parameter and has units of m�2/3. In addition, as α-3, A(α)-0.
As a result, the power spectrum for refractive-index fluctuations
disappears in the limiting case α¼3.

3. Fiber-coupling efficiency

The fiber-coupling efficiency for an optical wave is defined as
the ratio of the average power coupled into the fiber, 〈Pc〉, to the
average power in the receiver aperture plane, 〈Pa〉, and is given by
[23,26]

η¼ 〈Pc〉

〈Pa〉
¼ jRAUiðrÞUn

mðrÞdrj2
� �

R
AjUiðrÞj2dr

� � ; ð4Þ

where UiðrÞ is the incident optical field in the receiver aperture
plane and UmðrÞ is the normalized fiber-mode profile. The overlap
integral in the numerator of Eq. (4) is evaluated in the receiver
aperture plane A, because it is more convenient to do so. The
numerator of Eq. (4) can be rearranged by expanding the squared
integration to write the coupling efficiency as

η¼ 1
〈Pa〉

∬AΓiðr1; r2ÞUn

m r1ð ÞUmðr2Þdr1dr2; ð5Þ

where the mutual coherence function of the incident field is given
by

Γiðr1; r2Þ ¼ Uiðr1ÞUn

i ðr2Þ
� �

: ð6Þ
Assuming that the fiber end face is positioned in the focal plane

of the receiver lens and centered on the optical axis to maximize
the coupling efficiency, the fiber-mode profile propagated to the

front surface of the lens can be given by [23]

UmðrÞ ¼
kWmffiffiffiffiffiffi
2π

p
f
exp � kWm

2f

� �2

r2
" #

; ð7Þ

where k¼ 2π=λ and λ is the optical wavelength, Wm is the fiber-
mode field radius at the fiber end face, and f is the focal length of
the receiver lens. The amplitude factor in Eq. (7) is included to
normalize the power carried by the mode to unity. The fiber-mode
profile was approximated by a Gaussian function in the derivation
of Eq. (7). This approximation is commonly used in calculations of
fiber-coupling efficiency and does not lead to an appreciable loss
of accuracy [27].

3.1. Fiber-coupling efficiency of plane wave

For a plane wave, the mutual coherence function under weak
fluctuation conditions is given by [25]

ΓiðplÞðr1; r2Þ ¼ expf�4π2k2L
Z 1

0
κΦnðκÞ½1� J0ðκjr1�r2jÞ�dκg; ð8Þ

where ΦnðκÞ is the power spectrum for the refractive-index
fluctuations, L is the length of the optical path, and J0(x) is a
Bessel function of the first kind.

For non-Kolmogorov turbulence, Eq. (8) can be written as

ΓiðplÞðr1; r2; αÞ ¼ exp �4π2k2L
Z 1

0
κΦnðκ; αÞ½1� J0ðκjr1�r2jÞ�dκ

	 

:

ð9Þ
Substituting Eq. (1) into Eq. (9) yields the mutual coherence

function under weak fluctuation conditions for a plane wave

ΓiðplÞðr1; r2; αÞ ¼ exp �4AðαÞ ~C2
nπ

2k2L
Z 1

0
κðκ2þκ20Þ�α=2expð�κ2=κ2mÞdκ

	

þ4AðαÞ ~C2
nπ

2k2L
Z 1

0
κðκ2þκ20Þ�α=2expð�κ2=κ2mÞ

�J0ðκjr1�r2jÞdκ


: ð10Þ

Using the integral relation,

Uða; c; zÞ ¼ 1
ΓðαÞ

Z 1

0
e� zt ta�1ð1þtÞc�a�1dt; a40; ReðzÞ40;

ð11Þ
and the series representation of the Bessel function of the first
kind [25],

JpðxÞ ¼ ∑
1

n ¼ 0

ð�1Þnðx=2Þ2nþp

n!Γðnþpþ1Þ ; x o1;jj ð12Þ

where Uða; c; zÞ is the confluent hypergeometric function of the
second kind and p denotes the order of the Bessel function of the
first kind, Eq. (10) can be expressed as

ΓiðplÞðr1; r2; αÞ ¼ exp
	
�2AðαÞ ~C2

nπ
2k2L:κ2�α

0 U 1;2�α

2
;
κ20
κ2m

� �

þ2AðαÞ ~C2
nπ

2k2Lκ2�α
0 ∑

1

n ¼ 0

ð�1Þnðjr1�r2j2κ20=4Þn
n!

�U nþ1;nþ2�α

2
;
κ20
κ2m

� �

: ð13Þ

For non-Kolmogorov turbulence, the condition κ20=κ
2
m{1,

roughly the same as ðl0=L0Þ2{1, is always satisfied. Then using
the asymptotic formula [25],

Uða; c; zÞ � Γð1�cÞ
Γð1þa�cÞþ

Γðc�1Þ
ΓðαÞ z1� c; z {1;jj ð14Þ
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