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a b s t r a c t

In this work we use the formalism of chord functions (i.e. characteristic functions) to analytically solve
quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of
oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function
under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann
entropy, where the latter is the physical quantity of interest. We study in details two examples that are
known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an
oscillator with time dependent frequency. We show that it will appear in both cases a clear competition
between instability and dissipation. If the dissipation is small when compared to the instability, the
squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the
dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained,
thence the growth in the von Neumann entropy is contained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of quantum open systems has raised increasing
interest of physicists specially in the last decades [1,2]: it can be
directly connected to the non-observance of quantum phenomena
in the classical world. The same phenomena which led Schroe-
dinger to discredit his own theory is directly connected to the
linear structure of the Hilbert space. Most of them have nowadays
been observed and the usual approach as to why they are not
present in our everyday life is to consider that quantum mechanics
was first conceived for closed systems and effects of the surround-
ing environment, when included, tend to wash out quantum
properties [1].

This problem is however far from being a closed issue and the
classical limit of quantum mechanics is still a matter of enthusiastic
debates [1–4]. In particular, the questions on quantum-to-classical
transition acquire a singular aspect in the case of quantum systems
with nonlinear or chaotic classical counterparts. If dissipation is absent,
it is expected that instabilities yield the fast spreading of the wave
function throughout the phase space for such systems, especially the
macroscopic ones. Thus, an initially well localized wave packet will
soon be fragmented throughout available regions of the phase space,
and coherent superpositions will appear between the fragments,
leading to a rapid breakdown of the correspondence between classical

and quantum descriptions. Some authors [5–9] advocate that the
unavoidable interaction of a macroscopic systemwith its environment
is essential to prevent the appearing of these quantum signatures
yielded by inherent instabilities exhibited by the unitary evolution.
Notwithstanding, other authors [10] sustain that the coupling with an
environment is not necessary because such quantum effects are so
tiny that they are not measurable, especially in the case of macroscopic
objects. This controversy only stresses the importance of the study of
the role played by instabilities in the question of quantum-to-classical
transition.

In the present contribution, we are concerned to the questions:
what happens if the unitary evolution, i.e. the Hamiltonian of the
problem, may lead to instability? What role this instability effects
does play? Examples of application of non-autonomous Hamiltonian
systems can be found in a huge range of areas of physics, in
particular: in quantum optics, where a harmonic oscillator with
time dependent frequency is shown to generate squeezing [11,12],
tunneling [13], exact solutions for mathematical problems and
toy models [14], parametric amplification [15], quantum Brownian
motion [16]. Most of these works employs the model of the
harmonic oscillator with time dependent frequency. It is worth to
mention that this model is largely studied both in classical and
quantum physics and, as a merit, is amenable to analytical treat-
ment. In fact, the time independent Schroedinger equation for the
harmonic oscillator with time dependent frequency assumes the
form of Hill differential equation, which, in turn, is a particular form
of Pinney equation. Examples of Hill or Pinney equation in physics
can be found in studies on synchrotron accelerators [17], anisotropic
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Bose–Einstein condensates [18,19], Paul traps [20], and cosmological
models of particle creation [21]. Further, one of the first approaches
to include dissipation in quantum physics employed a class of time
dependent Hamiltonians, known as Caldirola–Kanai Hamiltonians
[16,22]. Even in cosmology, in the inflationary era, when quantum
effects are supposedly important, studies using non-autonomous
Hamiltonians, leading to instabilities and squeezing effects are found
[23]. One then frequently uses non-autonomous unitary evolutions
of the same type, now modeling transitions between harmonic
oscillators which give rise to particle formation [11]. Quantum chaos
and instabilities also arise in recent experiments and theoretical
models [24], rendering new perspectives to this interesting area in
physics. It is interesting to note that, due the features shared by both
models, some authors propose the Bose–Einstein condensates as a
test bench of some cosmological scenarios [19].

Another interesting problem was raised by Zurek and coworkers
[25] as to the rate of entropy increase when the system of interest is
coupled not to a reservoir but to an unstable, two degrees of freedom
system. In Ref. [14] the authors analytically showed that, in fact,
entropy grows faster, but for that, chaos is not necessary (although
sufficient). Instability alone already reflects this physics. Also, more
realistically, as discussed in [14], the potential modelling Paul–Penning
traps [26] has instability points which can be, to a certain degree,
approximated by an inverted oscillator. What happens to the well
known physics described, if an environment is added to the non-
autonomous unitary dynamics? Can dissipation stop the inevitable
acceleration caused by instabilities?

A word about the formal mathematical approach to the problem is
in order: for autonomous systems, there are several possibilities to
solve a master equation. One of the frequently used and powerful tools
is that of Lie algebras of superoperators. Perhaps that is the reason
why there is not so much work devoted to the question of non-
autonomous systems evolving under nonunitary dynamics. As dis-
cussed above, however, several interesting issues may be cleared, if
one manages to formulate the problem in appropriate language. In the
present case, we will be considering single-mode Gaussian states. For
these states, all we need are the second statistical moments or the
covariance matrix, which can be gotten very simply as derivatives of
the characteristic function (the Fourier transform of the Wigner
function), by taking the derivatives of this function at the origin
[27,28]. Moreover, a very elegant theoretical method for Wigner
functions and nonunitary quadratic evolutions is given in Ref. [28]. It
involves several classical elements, rendering the physics of the
problem very transparent and the inclusion of nonunitary terms is
natural.

In Section 2 we present an analytical solution for the char-
acteristic function, using the most general bilinear Lindbladian (for
dissipative reservoirs). We show our results for the inverted
harmonic oscillator (IHO) and for a non-autonomous harmonic
oscillator (NAHO) with frequency ωðtÞ ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγt

p
in Section 3

and in the last section we make our final remarks.

2. Analytic solution for the Wigner and characteristic function

In this section we review some aspects concerning the evolution
of single-mode Gaussian states under dissipation. The literature
is plenty of references on this subject (theory and applications)
[11,27–36]. To obtain our main result — analytical solutions for non-
autonomous Hamiltonians — this section is, although straight-
forward, useful.

2.1. Unitary dynamics of single mode Gaussian states

We can define a general form of the Hamiltonian part of the
equations of motion for both models studied in this work, namely,

the inverted harmonic oscillator (IHO) and the non-autonomous
harmonic oscillator. The Hamiltonian reads

Ĥðq̂; p̂; tÞ ¼ p̂
2m

þ1
2
mω2ðtÞq̂2

; ð1Þ

where q̂ and p̂ are position and linear momentum operators,
respectively, m is the mass of the oscillator and ωðtÞ is a time-
dependent frequency. If we take ω0 ¼ jωð0Þj, the annihilation and

creation operators for t¼0, â and â†, are given by

â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0=2ℏ

p
ðq̂þ iðp̂=mω0ÞÞ and â† ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0=2ℏ

p
ðq̂� iðp̂=mω0ÞÞ.

The Hamiltonian above can be written as [35,36]

Ĥðâ; â†
; tÞ ¼ ℏ f 1ðtÞ â† âþ1

2

� �
þ f 2ðtÞðâ†2þ â2Þ

h i
; ð2Þ

where f 1ðtÞ ¼ω0=2½ðωðtÞ=ω0Þ2þ1� and f 2ðtÞ ¼ω0=4½ðωðtÞ=ω0Þ2�1�.
In order to establish the notation, we will first present single-

mode Gaussian states and its parameters, well known in the
literature by several methods. The initial state is

ρ̂ð0Þ ¼ D̂ðαð0ÞÞŜðrð0Þ;ϕð0ÞÞρ̂ðνð0ÞÞŜ†ðrð0Þ;ϕð0ÞÞD̂†ðαð0ÞÞ; ð3Þ
where all the parameters are given by the first and second
moments:
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αn ¼ 〈â†
〉
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sâ† â†

r

ν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sâ† â �
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In the equations above sâ† â† ¼ 〈ðâ†Þ2〉�〈â†
〉2, sâ â ¼ 〈ðâÞ2〉� 〈â〉2,

sâ† â ¼ 〈â†â〉� 〈â†
〉〈â†

〉þ1. Those parameters are related to displa-
cement (α), squeezing (r, ϕ) and “impurity” (ν) of the state. In our
study the initial state will always be in this general single-mode
Gaussian form and, since the dynamics is quadratic, the state will
evolve as a single-mode Gaussian state [28].

One can study the state by analyzing the evolution of the
parameters above, or the covariance matrix (CM):

s¼
〈q̂2〉� 〈q̂〉2

1
2
〈 q̂p̂þ p̂q̂〉� 〈q̂〉〈p̂〉

1
2
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2.2. Wigner and characteristic functions — dissipationless case

The Wigner function is defined as [32]

Wð x!Þ¼ 1
2πℏ

Z
dq0 qþq0

2

� ����ρ̂ q�q0

2

����
	
exp � i

pq0

ℏ

� �
; ð6Þ

where x!¼ ðp; qÞ. It propagates “classically” for up to quadratic
dynamics [28]:

∂
∂t
Wtð x!Þ¼ Hð x!Þ;Wtð x!Þ

n o
; ð7Þ

where ff ; gg ¼ ð∂f =∂qÞ ð∂g=∂pÞ�ð∂f =∂pÞ ð∂g=∂qÞ is the classical Pois-
son bracket, and Hð x!Þ¼ x!� Ĥ x!.

One can write the propagated Wigner functions as [37]

Wtð x!Þ¼W0ðR� t x
!Þ; ð8Þ

where

Rt ¼ expð2ΩĤtÞ; ð9Þ
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