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a b s t r a c t

We report the numerical existence of dipole and vortex solitons for the two-dimensional nonlinear
Schrödinger (NLS) equation with external potentials that possess strong irregularities, i.e., edge
dislocations and a vacancy defects. Multi-humped solitons are computed by employing a spectral
fixed-point computational scheme. The nonlinear stability of these solitons is investigated using direct
simulations of the NLS equation and it is observed that these multi-humped modes in the defect lattices
can be stable or unstable.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The soliton theory is an interdisciplinary topic, where many
ideas from mathematical physics, nonlinear optics, solid state
physics and quantum theory are mutually benefited from each
other. Solitons are localized nonlinear waves and their properties
have provided a deep and fundamental understanding of complex
nonlinear systems. In recent years, there has been considerable
interest in studying solitons in system with periodic potentials or
lattices, in particular, those that can be generated in nonlinear
optical materials [1–6]. There have been very few studies of
complex-phase solutions in the presence of irregular type poten-
tials [7]. In [8], properties of solitons supported by optical lattices
featuring topological dislocations are investigated and it has been
found that these solitons experience attractive and repulsive
forces around the dislocations. For a recent review on lattice
solitons in various types of optical lattices and potential stabiliza-
tion of these structures are addressed in [9].

In periodic lattices, solitons can form when their propagation
constant, or eigenvalue, is within a certain region, often called
gaps, a concept that is borrowed from the Floquet–Bloch theory
for linear propagation. But the external potential of complex
systems can be much more general and physically richer than a
periodic lattice. For example, atomic crystals can have various
irregularities, such as defects and edge dislocations, and also
quasicrystal structures, which have long-range orientational order
but no translational symmetry [10–12]. In general, when the

lattice periodicity is slightly perturbed, the band-gap structure
and soliton properties also become slightly perturbed, and solitons
are expected to exist in much the same as in the perfectly periodic
case [13,14]. But when the perturbation is large as it is discussed in
[15], very little is known. In [16] a new method is presented to
create a lattice with defects by manipulating individual sites in a
2D optical lattice. The modified optical lattice is created by
interference of plane waves and spiral phase waves. We note
that, irregular lattice structures can be fabricated experimentally
[17–20].

Vortex-type solitons in the presence of an (optically or magne-
tically) induced lattice have been investigated analytically and
experimentally in Bose–Einstein condensates (BECs) (cf. [21,22])
and in optical Kerr media (cf. [23–28]). Such structures appear as
special solutions of the focusing two-dimensional cubic nonlinear
Schrödinger (NLS) equation with an external potential. Using a
fixed point spectral computational scheme, multiple dipole and
vortex solitons are shown to exist in (2þ1)-dimensional NLS
equation with an external quasicrystal lattice [29]. Stable funda-
mental solitons for the two-dimensional NLS equation with
external potentials that possess large variations from periodicity
are obtained numerically in [15], but the existence and stability
properties of multiple dipole and/or vortex structures have not
been studied extensively in the current literature. Our results can
find applications to photonic band-gap systems.

In this study, we compute multiple dipole and vortex soliton
solutions of the focusing cubic (2þ1)-dimensional NLS equation
with external potentials (lattices) that possess defects and dis-
locations. This is achieved using the spectral renormalization
method which is a fixed point spectral scheme. Nonlinear stability
properties of these solitons are also analyzed.
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The governing equation used in this study is the focusing
(2þ1)-dimensional NLS equation with an external potential,

iuzþΔuþjuj2u�Vðx; yÞu¼ 0: ð1Þ
In optics, uðx; y; zÞ corresponds to the complex-valued, slowly

varying amplitude of the electric field in the xy plane propagating
in the z direction, Δu� uxxþuyy corresponds to diffraction, the
cubic term in u originates from the nonlinear (Kerr) change of the
refractive index and Vðx; yÞ is an external optical potential that can
be written as the intensity of a sum of N phase-modulated plane
waves, i.e. (see [15]),

Vðx; yÞ ¼ V0

N2 ∑
N�1

n ¼ 0
ei k
!

n : x
!þ iθnðx;yÞ

�����

2

:

������
ð2Þ

where V040 is constant and corresponds to the peak depth of the
potential, i.e., V0 ¼maxx;yVðx; yÞ, x!¼ ðx; yÞ, k

!
n is a wave vector,

θnðx; yÞ is a phase function that characterizes edge irregularities or
vacancy defects.

In order to compute localized solutions (i.e., soliton solutions)
to nonlinear evolution equations, various techniques have been
used. For a detailed information on numerical methods for solving
wave equations see [30]. Below we mention some of these
methods. Shooting, relaxation techniques, and the self-consistency
method have been around for decades, but they are not
always efficient and/or applicable for multidimensional problems.
A different method was introduced by Petviashvili [31] to con-
struct localized solutions in the two-dimensional Korteweg–de
Vries equation (usually referred to as the Kadomtsev–Petviashvili
equation). The idea behind Petviashvili's method is to transform
the underlying governing equation to Fourier space and determine
a convergence factor based upon the degree (homogeneity) of a
single nonlinear term. This method has been extensively used to
find localized solutions in a wide range of nonlinear systems. This
method can be successfully applied to nonlinear systems only if
the degree of the nonlinearity is fixed in the associated evolution
equation. In fact, in nonlinear optics, many equations involve
nonlinearities with different homogeneities, such as cubic-quintic,
or even lack of homogeneity, as in saturable nonlinearity.

Ablowitz and Musslimani [32] proposed a generalized numer-
ical scheme for computing solitons in nonlinear wave guides called
Spectral Renormalization. The essence of the method is to trans-
form the governing equation into Fourier space and find a non-
linear nonlocal integral equation coupled to an algebraic equation.
The coupling prevents the numerical scheme from diverging. The
optical mode is then obtained from an iteration scheme, which
converges rapidly. This method can efficiently be applied to a large
class of problems including higher order nonlinear terms with
different homogeneities.

In recent years, Lakoba and Yang proposed generalizations of
Petviashvili's iteration method to scalar and vector Hamiltonian

equations with an arbitrary form of nonlinearity and potential
functions in [33]. Later they extended this method to eliminate
from the iterations a mode that is responsible either for the
divergence or the slow convergence of the iterations [34]. The
conjugate gradient method is yet another iterative method for
solving linear systems. Lately, the conjugate gradient method was
modified for finding solitary waves of nonlinear evolution [35,36].

In this work, we use the spectral renormalization method. To
do this, we seek a soliton solution of Eq. (1) in the form
uðx; y; zÞ ¼ f ðx; yÞe� iμz where f ðx; yÞ is a complex-valued function
and μ is the propagation constant (frequency). Substituting this
form of solution into Eq. (1), the following nonlinear eigenequa-
tion for f is obtained:

Δf þ½μþjf j2�Vðx; yÞ�f ¼ 0: ð3Þ
Eigenequation is completed with the boundary conditions

u-0 as jxj-1
After applying the Fourier transformation to Eq. (3), we add and

subtract a term rû, where r40. This procedure leads us to the
following equation:

f̂ ðνÞ ¼ R̂½f̂ � � ðrþμÞf̂ þF f½jf j2�Vðx; yÞ�f g
rþjνj2 : ð4Þ

Here F denotes the Fourier transformation, ν¼ ðνx; νyÞ are Fourier
variables and r is used to avoid a possible singularity in the
denominator. We introduce a new field variable f ðx; yÞ ¼ λwðx; yÞ,
where λa0 is a constant to be determined. The iteration method
takes the form ŵmþ1 ¼ λ�1

m R̂½λmŵm�, m¼ 0;1;2;…, where λm
satisfies the associated algebraic condition

∬1
�1jŵmðνÞj2 dν¼ λ�1

m ∬1
�1R̂½λmŵm�ŵn

mðνÞ dν ð5Þ
It has been found that this method often prevents the numer-

ical scheme from diverging. Thus, the soliton is obtained from a
convergent iterative scheme. In this work, in order to investigate
the dipole and vortex structures, as initial condition, we use multi-
humped Gaussian (two-humped for dipoles, three-humped and
four-humped for vortex modes) centered at either maxima or
minima on the lattice structure. The iteration continues until the
relative error δ¼ jλmþ1=λm�1j reaches 10�8. Convergence is
usually obtained quickly in the semi-infinite band gap when the
mode is strongly localized. Further it is observed that, the mode
becomes more extended as μ gets closer to the nonlinear band gap
edge and convergence of such a mode slows down during the
iterations.

2. Defect lattices

Defect lattices that are considered in this study are the lattice
with an edge dislocation and the lattice with a vacancy defect.
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Fig. 1. Contour images of lattices: (a) lattice with an edge dislocation; (b) lattice with a vacancy defect; (c) periodic (N¼4).
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