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a b s t r a c t

We discuss the propagation of two orthogonally polarized beams in nonlocal planar waveguides by
variational approach as well as a numerical method. The evolution equations for parameters and the
critical powers for soliton-like mutually-trapped propagation of the two beams are obtained. Moreover,
we analyze the influence of coupling coefficient, initial power, birefringence and the degree of nonlocal
on mutually-trapped propagation. In addition, we find that the two beams will have large phase
difference since phase shifts of the two beams are different under certain conditions. This theoretical
result may have potential applications in the light-control-light technology.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

As is widely known, nonlocal and local spatial optical solitons
have different characteristics. For instance, (1þ2)-dimension local
spatial optical soliton is unstable, while (1þ2)-dimension nonlocal
spatial optical soliton is stable [1,2]. Therefore, the nonlocal spatial
optical solitons which are modeled by the nonlocal nonlinear
Schrodinger equation (NNLSE) have been extensively studied [3–7]
in recent years. According to the degree of nonlocality determined
by the ratio of the characteristic length of the material to the beam
width, nonlocality can be classified into four categories: strongly
nonlocal, generally nonlocal, weakly nonlocal and local [3].
Snyder and Mitchell [4] simplified the NNLSE to a linear model
(S–M model) in a strongly nonlocal case, and obtained an exact
stationary analytical solution to the model . In 2004, Guo et al. [5]
expanded the response function in Taylor series to the second
order twice, and obtained a strong nonlocal model and proved that
the phase shift of such a nonlocal spatial optical soliton is large
comparable to its local counterpart . In general nonlocal media, the
analytical solution can be obtained by expanding the response
function in Taylor series to the fourth-order [6]. Since the char-
acteristic length of the weakly nonlocal medium is much narrower
than the beam width, the beam width can be expanded in Taylor
series to the second order, and a Sech-shaped stationary solution is

obtained [7]. So far, many kinds of novel nonlocal solitons have
been studied, such as nonlocal Bragg solitons [8], nonlocal vortex
solitons [9], nonlocal dark solitons [10–12], spiraling and multi-
pole solitons [13], rotating dipole solitons [14], nonlocal gap
solitons [15], quadratic solitons [16–18] and nonlocal description
of X waves in quadratic nonlinear materials [19]. Furthermore,
more different classes of nonlocal materials have been found, for
example, nematic liquid crystal [20], lead glass [21], Bose–Einstein
condensates [22] and liquid infiltrated photonic crystal fibers [23].
In recent years, the nonlocal vector solitons have attracted much
attention among optical community. For instance, Kartashov [24]
discussed multipole vector soliton in nonlocal media , Zhi [25]
analyzed the existence and stability of two-component vector
soliton in nematic liquid crystals for which one of the components
carries angular momentum and describes a vortex beam , Wang
and coworkers [26] investigated the incoherently coupled two-
color Manakov vector solitons and incoherently coupled vector
dipole soliton pairs ([27]) in nonlocal media.

Rigorous conditions for realizing Manakov solitons (vector
solitons) are as follows: (1) the ratio (coupling coefficient) of the
self-phase modulation (SPM) to the cross-phase modulation
(XPM) should be equal to unity; (2) the SPM coefficients need to
be equal for the two polarizations; (3) the energy change terms,
sometimes known as the four wave mixing (FWM) terms, must be
zero [28,29]. Thus the coupled nonlinear Schrodinger equations
which describe the propagation of optical beam with two ortho-
gonal polarizations are integrable. However, the case of these
conditions cannot be completely satisfied [29,30]. For example, the
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ratio of SPM/XPM is 3/2 in fused quartz [29]. In addition, media
with linear or nonlinear anisotropy has been found in the available
materials such as nematic liquid crystal [20] and lead glass [21].
Herein, the study which analyzes the impact of the coupling
coefficient, initial power and birefringence on the propagation of
two orthogonally polarized beams in planar nonlocal waveguides
is necessary and has actual significance.

2. Theoretical model

The propagation of two orthogonally polarized beams in nonlocal
planar waveguide could be well described by the following coupled
Eqs. [17–20]:
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The propagation of soliton in nonlocal media with different
response function, such as square [10,31], exponential [20] or
Gaussian-shaped response function [5], all have been studied. In
this paper, we adopt the Gaussian-shaped response function. This
is because the analytic solution of NNLSE can be obtained
conveniently by using it and the physical properties do not depend
strongly on the concrete shape of the response function [32].
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where ψj(j¼1, 2) is the slowly varying amplitude for TE and TM
modes (subscript 1 or 2 stands for TE or TM modes), respectively.
μj¼1/2kj, kj¼k0n0j, kj is the propagation constant in the media,
k0 is the propagation constant in the vacuum and n0j is the
linear refractive index of the media, thus ρj¼kjηj¼kjn2/n0j¼k0n2
[5,29,30]. mj represents coupling coefficient, s is the characteristic
length of the response function. We assume that the coupling
coefficients are equal as references [29,30], namely m1¼m2¼m.

In this paper, we adopt the variational approach which has
been exploited in studying the two-component bright solitons in
nonlinear media [33,34]. The Lagrange density equation corre-
sponding to Eqs. (1a) and (1b) is as follows:
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We assume that the two orthogonally polarized beams are
Gaussian-shaped.
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where Ai(z) (i¼1, 2) is the amplitude, θi(z) is the phase of complex
amplitude, ci(z) is the phase-front curvature of the beam and
ai(z) represents the beam width.

Inserting the trial function Eq. (4a) and (4b) into Eq. (3) and
then integrating over x, we obtained the following:
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By variational principle, evolution equations for the parameters
of the two beams can be obtained.
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The incident powers of the two orthogonally polarized beams
are as follows:
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Combining Eqs. (6a), (6b), (6d), and (6e), we obtain the
evolution equations of the beams width as follows:
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We will discuss the evolution law of the beam which is
described by Eqs. (8a) and (8b). Assuming that the two beam
widths are equal and unchanged, a0¼a1¼a2, d2aj/dzj2|z¼0¼0, we
obtain the critical powers of the mutually-trapped propagation.
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