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a b s t r a c t

We study rogue waves in a graded-index planar waveguide with oscillating refractive index. We find that
an additional refractive index can be used to manipulate the trajectory of the rogue wave without
changing its shape evolution characters. The density distribution profile of rogue wave with the highest
peak can be kept well through manipulating the graded-index term and nonlinear coefficient.
Furthermore, the trajectories of these nonautonomous rogue waves still look like an “X” shape. These
results provide possibilities to manipulate rogue wave in nonautonomous nonlinear systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, rogue wave (RW) were found to exist in many
differen physical systems, such as ocean [1–6], water wave tank
[7], nonlinear fiber [8,9], in plasma [10], and even in microwave
cavities [11]. Many RW experiments in nonlinear systems suggest
that the rational solution of the simplified nonlinear Schrod̈inger
(NLS) equation can be used to describe RW behavior well [7,10,12].
However, the simplified NLS cannot describe the dynamics of RW
in nonlinear system with variable coefficients. Moreover, the
nonlinear coefficient and other parameters are usually variable
in real systems. Can the perturbation signals for RW still evolve to
be RW in the nonlinear system with variable coefficients? If they
can, can the dynamical characters of RW be manipulated through
controlling some physical coefficients?

For nonlinear waveguide, there are many system coefficients
which can be manipulated conveniently, such as external refractive
index and Kerr-type coefficient, etc. These characters make the
nonlinear waveguide be convenient to discuss the above two
questions [13]. The position and direction control of optical rogue
waves were proposed in nonlinear graded-index waveguide ampli-
fiers [14]. Furthermore, the refractive index in the waveguide can be
varied to be oscillating with propagation distance conveniently. Can
RW still exist on plane wave background even with an oscillating
refractive index? On the other hand, RW just seems to appear from

nowhere and disappear without a trace. In fact it has its trajectory
characters, for example, the trajectory of Peregrine RW's valleys is an
“X” shape [20]. The highest peak is found to emerge when the
distance between two valleys is the smallest. Then, what about the
trajectories of RWs in these nonautonomous cases?

In this paper, we study on rogue waves in a nonlinear planar
waveguide with oscillating refractive index. The explicit trajectory
and structural properties are investigated through defining certain
property functions. The results indicate that RW can still exist in
the planar waveguide with oscillating refractive index. The oscil-
lating term has no effects on the structure properties of RW, and it
just affect the trajectory of the rogue wave. The trajectory and
width evolution of the “catched” RW are compared with the
standard Peregrine RW explicitly. The trajectory of RW valleys still
look like an “X” type with some deviations. But the changing rate
of width between the two valleys can be managed well through
varying the graded-index and nonlinear coefficient. These results
are helpful to find ways to manage them experimentally in a
planar waveguide system.

2. The model and nonautonomous rogue waves solutions

For nonlinear waveguide, there are many variable physical
coefficients, such as nonlinear coefficient, graded-refractive index,
gain or loss effects and long-period grating. Therefore, we begin
from the following generalized NLS with varying coefficients:
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Here, x and z are the spatial coordinate and propagation distance,
respectively. R(z), F(z), and G(z) are functions of the normalized
distance z. R(z) represents Kerr nonlinearity, which can be negative
or positive, corresponding to the graded-index medium acts as self-
focusing or self-defocusing Kerr nonlinearities. FðzÞx2 denotes the
graded-refractive index of the waveguide, G(z) stands for gain or loss
in the waveguide and f ðzÞx represents an additional variable refrac-
tive index. The nonautonomous soliton in this system has been
studied in [15]. Here, we focus on the dynamics of RW in this system.
Considering the following form to simplify Eq. (1):
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we can transform Eq. (1) to be the simplified NLS [19]
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Then we derive an exact RW solution of the nonautonomous system
from the well-known Peregrine RW as follows:
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The functions G(z) and C(z) can be chosen arbitrary, as long as the
function can be integrated. We emphasize that RW solution obtained
here could be used to study dynamics of nonautonomous RW in
many different cases conveniently. Especially, when CðzÞ ¼ 0, and
GðzÞ ¼ 0, the nonautonomous RW solution will become the well
known Peregrine RW [9,10,12]. Especially, when CðzÞ ¼ R

GðzÞ dz, the
amplitude of background on which RW exists will be unchanged. To
observe dynamics of RW conveniently, all following discussions are
made with the condition. Under this condition, we can manipulate
RW through varying the parameters C(z) and f ðzÞ. These manipula-
tions could be helpful to understand the fundamental character or
even mechanism of RW.

When f ðzÞ ¼ l cos ðwzÞ, a similar nonautonomous RW solution
has been derived in [16]. Until now, most studies demonstrate the
whole evolution characters of nonautonomous RW [13,16–18].
However, the explicit physical properties have not been shown
explicitly. In this paper, we define some related property functions
to describe its explicit characters. For example, the trajectory of
RW can be described by the trajectories of its hump and two
valleys's centers [20]. For the generalized nonautonomous RW, the
trajectory can be described by xh and xv which denote the
trajectory of the hump and valleys of RW respectively. The explicit
expressions are
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Moreover, the RW's structure evolution can be described by hump's
peak and the valleys' depth. In [21], the width of RW was defined as
the distance between two valleys' centers. Here, to observe the

Fig. 1. (a) The evolution of RW which appears in planar waveguide with oscillating refractive index and without graded-index and gain. It is seen the RW oscillates with
propagation evolution. (b) The trajectories of the oscillating RW and Peregrine RW. Red dashed line denotes the trajectory of oscillating RW's hump's center, green solid lines
correspond to the oscillating RW's two valleys. The blue dashed lines are the trajectory of Peregrine RW. The parameters are l¼10, w¼20, GðzÞ ¼ 0, and CðzÞ ¼ 0.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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