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a b s t r a c t

We investigate the theoretical limits of using diffraction of a single laser beam by a patterned surface as a
way to measure surface deformation caused by stress or thermal expansion. Applying Gaussian beam
optics to a lens-grating system, we identify the relevant parameters of the grating, the laser beam and
the diffraction order and other conditions to the sensitivity limits. Theory suggests that sensitivity
increases linearly with the diffraction order, regardless of the diffracted angle, and that relative
deformation of the order of 10�6 should be detectable with common optical components and laser
beams. This corresponds to thermal expansion coefficients as low as 10�8 1C�1 measured over 100 1C
and stresses as low as 10�6. The proposed technique would be applicable to transparent or opaque
samples and very small sample volumes.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optical diffraction techniques are useful for measuring material
deformation, particularly in the case of solids modified by strain or
by heat [1–13]. A plane grating deflects light beam by an angle
which depends on the grating period, so changes in this period is
detected by monitoring the diffracted beam direction. This method
is effectively a strain gauge that requires no physical contact with
the sample, and it can be done remotely and in a variety of harsh
environments. To give an example, unlike push-rod techniques
and optical methods using interferometry to measure sample
displacements [8–10,14–16], the beam deflection technique is
relatively insensitive to thermal refractive index changes in the
vicinity of the sample. While some variations of the diffraction
technique have used incoherent light sources [1,7], highest
accuracies are obtained with laser beams because of their spectral
purity and spatial coherence. These properties are desirable to
measure diffraction angle changes accurately, as can be done by
monitoring the position of a laser beam focused on a camera.

In some of the previous works [2,6,9,10], some aspects of
instrumental resolution were considered. However, a more detailed
approach to the problem is needed, in particular to take into
account the effect of higher diffraction orders and the properties
and size of diffracted beams and the various grating parameters.
In this paper, we apply the diffraction theory of Gaussian beams to

the measurement of thermal expansion and strain deformation. We
investigate the theoretical detection limits and discuss the impor-
tance of relevant beam, grating beam focusing parameters. We then
reports measurements of thermal expansion and verify certain key
features of the theory.

2. Diffracted Gaussian beam theory

Let's consider the problem outlined in Fig. 1. A Gaussian laser
beam with width w and wavelength λ undergoes diffraction to
m-th order on a grating with a spatial period Γ. To achieve
measurements with high angular accuracies, the beam is focused
by a lens with focal length f located just before the grating.
Assuming the Gaussian beam to have a nearly flat phase front at
the lens, the beam reaches a minimum beam waist wo on a
detector (a camera) located at a distance f from the grating (the
distance from the lens to the grating is negligible compared to f).
Angles θi and θm represent the incident angle and diffracted
angles relative to the normal of the grating. Both the incident
and diffracted beams lie in the plane normal to the ruling of the
grating.

According to the Bragg's condition for diffraction

mλ¼Γð sin θm� sin θiÞ ð1Þ

If the period of the grating changes as a result of thermal
expansion (or stress), the diffracted angle θm is expected to change
accordingly. We will first tackle the problem as it applies to the
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thermal expansion, then, in Section 3, we will convert the key
results for the case of mechanical strain measurement.

In principle, from Eq. (1), it is possible to obtain the thermal
expansion coefficient of the grating by measuring the beam's
angular deflection per unit of temperature. To this end, there are
two factors that are relevant to the sensitivity (accuracy) of the
method (1) the sweep rate, or the diffracted beam angle change
per unit of temperature, and (2) the angular resolution on the
measured diffracted beam. The following sections analyze both
factors.

2.1. Angular sweep rate

By differentiating both sides of Eq. (1), we obtain the following
rate of change for the diffraction angle:

dθm

dΓ
¼ � mλ

Γ2 cos θm

ð2Þ

This result is obtained by taking m, λ and θi to be constant. If the
grating is made of a material with linear expansion coefficient α,
the sweep rate is calculated in the following way. Starting with

ΓðTÞ ¼Γoð1þαTÞ ð3Þ

where Γo is the grating period at some reference temperature and
T is the temperature difference from this reference temperature,
we obtain by differentiation

dΓ
dT

¼ αΓo ð4Þ

and from the identity

dθm

dT
¼ dθm

dΓ
dΓ
dT

ð5Þ

we obtain the sweep rate

dθm

dT
¼ �λα

Γo
M ð6Þ

The quantity

M¼ m
cos θm

ð7Þ

Effectively acts as a magnification factor.
We expect the sensitivity to thermal expansion to be highest

when the sweep rate is largest. Therefore, it is desirable to uses
highest possible diffraction orders m and the largest possible θm.
Note that θm can be made arbitrarily close to 901 by appropriately
choosing Γo and λ. Indeed, from Eq. (1) we see that θm ¼ 901 for
Γo ¼mλ if ma0:

Note that the sweep rate does not depend on the incidence
angle θi. For simplicity and convenience, we can therefore assume
normal incidence.

2.2. Angular resolution

The other important consideration is the angular resolution in
measuring the diffracted beam angle with the lens-grating-camera
system. The accuracy on measuring beam angle change is limited
by the beam position uncertainty δx on the camera, which is some
fraction of the size of the beam wm on the camera, so we can write
δx¼ Awm. The dimensionless constant A depends on factors such
as noise, the smoothness of the laser beam profile, the camera
resolution, the averaging and the fitting algorithm used. From
experience, we consider values ranging from 10�4 to 10�1 to be
typical.

Assuming δx⪡f , the minimum detectable change in diffraction
angle on the camera is

δθm ¼ δx
f
¼ Awm

f
ð8Þ

We now develop this expression further by finding the mini-
mum spot size of the beam on the camera given the incident laser
beam parameters. Ideally, the camera would be located at the focal
spot of the beam. From Gaussian beam optics [17], a laser beam
with a flat phase front that is focused by a lens with focal length f
yields a minimum beam waist given by

wo ¼
λf
πw

ð9Þ

where w is the beam waist at the lens. However, this applies only
to the non-diffracted beam, or the m¼0 case. To calculate the
minimum beam waist of focused beams diffracted to higher
orders, we need to consider the problem shown in Fig. 2. Here a
beam diffracted at an angle θm is focused to a point M located at a
distance fm away.

Bragg's law imposes that the phase front of a diffracted beam
be uniform in the plane perpendicular to the direction of propaga-
tion. The phases at points O and I are therefore equal to within
a multiple of 2π. We can therefore write φO ¼φI so that
φA�φO ¼φA�φI . In addition, all light rays arriving at M have
the same phase, which is also true for all rays arriving at N. From
this we have the condition that NA�NO¼MA�MI, so thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2þOA2

q
� f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2mþðOA cos θmÞ 2

q
� f m ð10Þ

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þOA2

f 2

s
� f ¼ f m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðOA cos θmÞ2

f 2m

vuut � f m ð11Þ

and since OA⪡f

Fig. 1. A Gaussian beam of width w is focused by a lens of focal length f onto a
camera. The beam is diffracted to m-th order by a grating.

Fig. 2. Focusing of a beam diffracted to m-th order.
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