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a b s t r a c t

For the purpose of investigating the effect of the initial spatial distribution of the excited atoms in a slab
on its emission characteristics, I compute, for different configurations of a 1D system consisting initially
of equal number of atoms in the excited and ground states, the emitted field at both the front-end and
back-end of the slab. I show that depending on the spatial configuration of the excited atoms/ground
states atoms in the slab, the system may be at later times in a metastable state, emits equally from both
end faces or emits preferentially from only one of these. These qualitatively distinct states of the system
are due to the different spatial coherence present in each case, and/or the difference in the strong inter-
modal coupling present and resulting from the nonlinearity in the Maxwell–Bloch equations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dicke [1] in his seminal work on superradiance [see, for example,
the review paper/books: [2–4] for more background] emphasized the
non-applicability of the original theory simple results to the case of
large samples; however it was always asserted, inter alia, that, for a
3-D sample with linear dimension ⪡ the wavelength of the radiation
emitted in a transition from the excited state to the ground state of
the two-level atom, the value of the cooperative decay rate (CDR) is
independent of the particular geometry and distribution of the
excited atoms in the sample considered.

Many extensions to Dicke's original work to generalize his
results to extended samples were actively pursued by many
groups. Rehler and Eberly [5] proposed a semiclassical treatment
to obtain both the directional and temporal characteristics of the
superradiant emission. Ernst and Stehle [6] proposed the idea that
the emitted photons tend to form a ray. Bonifacio et al. [7–10]
proposed the single mode treatment of the emission process.
Bonifacio, Degiorgio, Glauber, Haake, and Narducci et al. [11–17]
focused their attention on obtaining approximate solutions to the
field-atoms equations. Parallel to these efforts, were the work of a
number of authors that sought a better understanding of super-
radiance by obtaining the emission characteristics of a finite
number of atoms [18–20]. Carmichael, Kim, Clemens et al. [21–24]
developed the quantum trajectory theory of spontaneous emission.

Friedberg and the author pursued their investigation of the
cooperative phenomena in an ensemble of two-level atoms by
consistently using the formalism and techniques of quantum
electrodynamics:

– We showed that the assumption that the decay time in the
emission from a collection of N atoms, in small samples, to be
simply N-times smaller than that of the isolated atom is not in
general true [25,26]. We showed specifically that for config-
urations where the atomic density profile in a small sphere
varied with the radial distance the value of the CDR depended
on the details of the atomic spatial distribution.

– We obtained closed-form expressions for the CDR and its twin
effect, the Cooperative Lamb Shift (CLS), at initial time, for
different geometric configurations and sizes of the atomic
sample. In [27], I summarized these expressions.

– We showed that an expansion in the eigenmodes of the
Lienard–Weichert Green's function provided a powerful tool
to obtain many interesting results in the linear regime of coop-
erative phenomena specifically to compute the time-dependence
of effects resulting from cooperative phenomena in the linear
regime, it proved useful to formulate the dynamics in these
problems in term of an expansion of the physical quantities in a
basis formed by the eigenfunctions of the Lienard–Wiechert
Green's function. For example, using the 1D expression of the
eigenfunction expansion, it was possible to compute for the slab
geometry: (i) the Dynamical Lorentz Shift [28], (ii) the spectral
distribution of the emission from a slab prepared by a delta pulse
[29], and (iii) the Purcell–Dicke effect [30], which predicts many-
fold enhancement in the CDR of a collection of N two-level
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identical atoms between two metals when the plasmon frequency
in the metal and the polariton frequency of the two-level medium
are in resonance. Furthermore, the expansion in eigenfunctions
technique allowed us to obtain closed-form expression for the
pumping rate and the lasing frequency for a stationary state of N
two-level atoms near lasing threshold [31].

Investigating the cooperative effects in the nonlinear regime
using the eigenmode analysis requires recasting the set of Max-
well–Bloch equations in the basis formed by the eigenmodes. In [32],
I gave the details for obtaining the equations of motion for the
expansion coefficients of the different physical quantities, and I
solved these equations to analyze the details of the superradiance
emission from a completely inverted system. The method proved
extremely helpful in following physically the different phases of
superradiance, encouraging one to explore deeper other effects of the
nonlinearity, obtained through the standard numerical techniques.

In this paper, I analyze the problem of the emission from the slab
for different configurations of the initial spatial distribution of the
excited and ground state atoms for a slab with thickness of the
order of the atomic transitionwavelengtth. In this problem different
initial spatial distributions of the atomic excitation leads to qualita-
tively different states of the system at later times. The cases that
will be considered in my analysis have all in common the property
that at the initial time the total number of excited atoms and
ground state atoms in the system is the same. These configurations
are of particular interest because in each of these cases, the linear
theory (Beer's Law) would predict that a beam entering the slab
normally at T¼0 from one of its faces would exit from the other
face neither amplified nor attenuated since

R
nðz; t ¼ 0Þdz¼ 0.

The main results obtained in this this paper are that, depending
on the initial spatial configuration of the excited atoms/ground
states atoms, the two-level atom system may remain at later times
in a metastable state (i.e. essentially no emission on the super-
radiance time-scale or equivalently having the Rabi frequency
associated with the electric field at the slab exit plane to be of the
same order as its initial value due to the quantum fluctuations),
emits equally from both end faces of the slab or emits preferen-
tially from only one of these faces.

The paper is organized as follows: In Section 2, I summarize the
results obtained in [32] which transformed the nonlinear system
of partial differential Maxwell–Bloch equations into an infinite set
of first order coupled ordinary differential equations for the
expansion coefficients of the dynamical variables. In Section 3, I
give the results of integrating these equations for a number of
initial spatial configurations. I conclude in Section 4.

2. New form of the 1D Maxwell–Bloch equations

As was previously shown in [32], if one decomposes the system's
dynamical variables, i.e. the atomic polarization, the difference in
population between the two atomic states and the Rabi frequency
associated with the electric field, in the basis formed by the

eigenfunctions of the integral equation:

ΛsφsðZÞ ¼
u0

2

Z 1

�1
dZ0expðiu0 Z�Z0�� ��ÞφsðZ0Þ; ð1Þ

as follows

ψðZ; TÞ ¼∑
s
eos ðTÞ ~φo

s ðTÞþ∑
s
ees ðTÞ ~φe

s ðTÞ; ð2Þ

nðZ; TÞ ¼∑
s
ηos ðTÞ ~φo

s ðTÞþ∑
s
ηes ðTÞ ~φe

s ðTÞ; ð3Þ

χðZ; TÞ ¼∑
s
pos ðTÞ ~φo

s ðTÞþ∑
s
pes ðTÞ ~φe

s ðTÞ; ð4Þ

the set of Maxwell–Bloch equations reduce to an infinite set of
coupled ordinary first order differential equations in the expansion
coefficients. (The tilde over the eigenfunction indicates that the
normalized eigenfunctions are used in the expansions format.)

In what follows, I shall use the system of units where all
quantities are normalized to the parameter of interatomic coop-
erativity C ¼ 4πN℘2=ℏV , where N is the number of particle, V is the
slab volume, and ℘ is the reduced dipole moment of the atomic
transition (its normalization is uniquely determined when given as
function of the isolated atom decay rate, see below). In these units,
the transverse decay rate Γ2, due to the instantaneous dipole–dipole
interaction between atoms, is equal to 2.33/4, and the normalized
Lorentz shift is equal to 1/3. The isolated atom decay rate
γ1 ¼ ð4=3Þ℘2k30=ℏ specifies the longitudinal decay rate of the system.
The normalized coordinates are respectively: Z ¼ z=z0T ¼ Ct Γ1 ¼
γ1=C Γ2 ¼ γ2=C u0 ¼ k0 z0 ΩL ¼ ωL=C. The slab thickness is 2z0,
and ΓT ¼ ðΓ1=2ÞþΓ2.

It is to be noted that the above eigenfunctions belong to one of
two families, each with a definite parity (odd, even) in space, given
respectively by

φo
s ðZÞ ¼ sin ðvos ZÞ; ð5Þ

φe
s ðZÞ ¼ cos ðvesZÞ; ð6Þ

where the complex wavevectors ðvos ; ves Þ are solutions of the
transcendental equations

cotðv0s Þ ¼ i
u0

vos
; ð7Þ

tan ðves Þ ¼ � i
u0

ves
; ð8Þ

where s, a positive integer, is the index of the solution.
The eigenvalues associated with these eigenfunctions are given

by:

Λo;e
s ¼ i

u2
0

u2
0�ðvo;es Þ2

U ð9Þ

I plot in Fig. 1, the real part and the imaginary part of the
characteristic wave-vectors as function of the index, and the locus
in the complex plane of the eigenvalues for u0 ¼ 7π=4. The
important thing to note in these figures is that: (i) the real part
of the characteristic vector for the odd and even solutions differ

Fig. 1. The values of the odd (‘o’) and even (‘e’) wave-vectors and corresponding eigenvalues for a slab having thickness 2z0, and where u0 ¼ k0z0 ¼ 7π=4.
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