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a b s t r a c t

We describe spontaneous parametric down-conversion of a single-photon pump in quadratic nonlinear
waveguides and waveguide arrays, taking into account spectral broadening of the signal and idler
photons. We perform a detailed analysis of the photon-pair intensities, spectra and spatial correlations
for different types of phase-matching conditions and identify suppression of Rabi-like oscillations due to
spectral dispersion. We also discuss distinct features of signal and idler photon correlations related to the
single-photon nature of the pump.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spontaneous parametric down-conversion (SPDC) in quadratic
nonlinear crystals, where a pump photon is spontaneously split into
a pair of signal and idler photons, has become a source of choice for
experimental generation of entangled photons [1]. The optical non-
linearity on a few-photon level is relatively small, and a conventionally
SPDC process is realized with a relatively strong classical laser pump.
However, investigation of nonlinear effects in a few-photon regime
can lead to fundamental and ultimately technological advances.
Important experimental results include two-photon sum-frequency
generation [2,3] and SPDC with a single-photon pump [4]. Recently,
coherent single-photon conversion has been demonstrated based on a
four-wave-mixing interaction which mimicked the SPDC process in
quadratic crystals [5], which can lead to optically switchable quantum
circuits with a complete control over individual photons.

The photons generated through SPDC can feature nontrivial
spatial entanglement, which is essential for realization of quantum
simulations and processing [6]. For integrated quantum chips, the
entanglement is required between different waveguides. Such
entangled photons can be used to realize quantum walks through
coupling between waveguides [7] and implement boson sampling
machine [8–11]. It was suggested that on-chip generation of
entangled photons is possible with nonlinear waveguide arrays
(WGAs), which can efficiently produce entangled photon pairs and

simultaneously shape their spatial correlations through quantum
walks [12]. So far, only the regime of a strong classical pump
coupled to a nonlinear WGA was studied [12–15].

In this work, we describe SPDC in a nonlinear WGA for a single-
photon pump, applying quantum pump description and taking
into account possible pump depletion. First, in Section 2 we
present results for a single waveguide. Then, in Section 3 we
generalize the analysis to a periodic array of coupled waveguides.
We present conclusions in Section 4.

2. Single-photon SPDC in one waveguide

First we study the properties of the SPDC process in a single
nonlinear waveguide [Fig. 1(a)]. The Hamiltonian of the system can
then be written as follows [1,16]:
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where aj ða†j Þ are annihilation (creation) operators for pump, signal
and idler modes (j¼ p; s; i), ωj and βj are the corresponding
frequencies and mode propagation constants in a waveguide,
and χ is the effective nonlinear susceptibility coefficient.

We analyze the process when a single pump photon is
converted into a signal photon and an idler photons. We consider
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the case of a pump photon with long temporal duration, and
accordingly narrow spectrum. However, the spectra of signal and
idler photons can be much broader. Then, we seek the wave
function describing the evolution of photon states in a form

similar to Refs. [5,17], but accounting for spectra of photons:

jψ 〉¼ eiβUz
Z

dωp UðzÞSðωpÞa†pðωpÞþ
Z
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�
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i
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Here U is the pump amplitude, V is the biphoton amplitude, SðωpÞ
is the pump spectral distribution that is normalized asR
dωpjSðωpÞj2 ¼ 1, Ω is the detuning of signal and idler photons

as ωs ¼ωp=2þΩ and ωi ¼ωp=2�Ω, βU ¼ βp at the central pump
frequency, and j0〉 is the vacuum state. Note that U and V are
considered to be independent on ωp for a narrowband single-
photon pump.

The wavefunction jψ 〉 for the SPDC obeys the Schrödinger
equation for a traveling wave [1]:

i
jψ 〉

dz
¼ Ĥ ψ 〉:

�� ð3Þ

We substitute Eq. (2) into Eq. (3), and obtain the coupled-mode
equations while neglecting the dependence of mismatches βj on
ωp for a narrowband pump photon:
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Z
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¼ χnUðzÞþ iΔβðΩÞVðΩ; zÞ; ð4Þ

Fig. 1. (a) Scheme of SPDC for single-photon pump in a quadratic nonlinear
waveguide. (b) Three kinds of possible phase-matching conditions : (1)
Δβ0 ¼ �6, non-degenerate SPDC favoring ωsaωi , (2) Δβ0 ¼ 0, degenerate SPDC
favoring ωsCωi , and (3) Δβ0 ¼ 6, phase-mismatched SPDC.
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Fig. 2. (a)–(c) Biphoton intensity IV depending on propagation distance and frequency for different phase-matching conditions; (d)–(f) pump intensity Ip (dashed line) and
signal (or idler) intensity ~IV (solid line); (g)–(i) biphoton intensities depending on propagation distance and frequency for classical undepleted pump UðzÞ � const. The phase-
matching parameters are (a), (d), (g) Δβ0 ¼ �6; (b), (e), (h) Δβ0 ¼ 0; and (c), (f), (i) Δβ0 ¼ 6.
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