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We study the propagations of optical self-similar solutions in a tapered graded-index nonlinear-fiber
amplifier with an external source through asymmetric twin-core fiber amplifiers. Various types of exact
self-similar solutions, including the W-shaped and U-shaped solutions, trigonometric function solutions,
and periodic wave solutions are found. The results show that these different types of self-similar optical
structures can be generated and effectively controlled by modulating the amplitude of the source. The
influences of nonlinear tunneling effects on the propagation of optical pulses are investigated as well.
The obtained results may have potential applications in a tapered graded-index nonlinear-fiber amplifier
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1. Introduction

In the past few years, the self-similar waves or similaritons in
nonautonomous systems and the asymptotic parabolic pulses in the
gain amplifier media have been studied extensively due to their
potential applications in nonlinearity and dispersion management
systems [1-3]. The best known equation used to describe these
problems is the nonlinear Schrodinger equation (NLSE), which has
been analyzed from different points of view [4,5]. It is noted that the
first soliton dispersion management experiment in a fiber with
hyperbolically decreasing group velocity dispersion was realized in
1991 by Dianov's group at the General Physics Institute [6]. Therefore,
the study for NLSE with distributed coefficients is significant. In
recent years, studies of the NLSE with distributed coefficients have
been widespread in [7-12]. Many exact optical self-similar waves,
including the bright and dark soliton solutions [13], quasi-soliton
solutions [14], and periodic wave solutions [15] to the NLSE model
are found. These self-similar waves may be useful in real applications,
since they can maintain their overall shapes but with their ampli-
tudes and widths changing with the modulation of system para-
meters such as dispersion, nonlinearity, gain, and inhomogeneity.

It is noted that the above works for pulse propagation in
nonlinear media are restricted to single core fibers. In fact, the
twin-core fibers (TCFs), which originate from the linear coupling
between the two fibers, can easily be fabricated [16,17]. Recently,
the dynamics of self-similar solutions in TCFs has been investi-
gated in Refs. [18-20], where the relevant equation is the NLSE
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driven by an external source. In addition, nonautonomous matter
waves in Bose-Einstein condensates in the presence of an inho-
mogeneous source has been reported in Ref. [21]. More recently,
the self-similar optical solutions in a graded-index nonlinear-fiber
amplifier with an external source have been studied in Refs.
[22,23]. Compression and propagation of dispersive and rectan-
gular similaritons in asymmetric TCFs have been explored in Ref.
[24]. In this paper, we will study the evolutions of self-similar
solutions in a graded-index nonlinear-fiber amplifier with an
external source through asymmetric TCF amplifiers. Based on the
assumption in Refs. [17,19], the origin of the source in the model
can be attributed to the built-in asymmetry of the TCF. By using
the self-similar transformation, we present various types of exact
self-similar solutions, including the W-shaped and U-shaped
solutions, trigonometric function solutions, and periodic wave
solutions. These self-similar solutions are obtained in the linearly
chirped and unchirped cases by choosing different types of the
tapering function F(z). The results show that these different types
of self-similar optical structures can be generated and effectively
controlled by modulating the amplitude of the source. The main
difference between the present work and that in Ref. [23] is that
we introduce the inhomogeneity Kerr-nonlinearity function R(z),
which imposes the nonlinear tunneling effects on the propagation
of the optical self-similar solutions.

2. The model and reduction
We consider the propagation of a continuous-wave optical beam

inside two adjoining, closely spaced, nonidentical, single-mode
fibers; the active one is a tapered, graded-index fiber inhomogeneity
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along the medium, whereas the passive one is a step-index fiber.
The equation for the beam propagation in tapered, inhomogeneity-
graded-index nonlinear fiber amplifiers with refractive index

n(z,x) = ng+n1F@2)x* + nR@2)1(z, X), e
is
oy 1 Pyy 1 2 ig@)—a@)
i Ty C + 2koan(z)x im s
+komoR@)ly1 12wy +Faray, exp [—i(kz — wx)] =0, (2)

where g and « denote the linear gain and loss, respectively. The wave
number ko = 271 /4 with ng and 4 being the linear index and wave-
length of the optical source, respectively. n; is the linear defocusing
parameter (n; >0), and n, is the Kerr-type nonlinearity of the
waveguide amplifier. The dimensionless profile function F(z) can be
negative or positive, which corresponds to the graded-index medium
acting as a focusing or defocusing linear lens. The function R(z) > 0,
which represents inhomogeneity of Kerr nonlinearity along medium.
a1z and ay; [below in Eq. (3)] are the coupling parameter of the two
nonidentical fibers and I"= \/y;/y, is the ratio of the nonlinearity
strengths in the two fibers. Here the parameter y; =nyw; /(cAeff
where Aeff is the effective core area, c is the speed of light, and w; is
the carrier frequency in each fiber. The equation for the envelope of
the pulse that propagates in step-index fibers is

dyy Oy
l( P X Jr/z

+ a1y exp [i(kz—wox)] =0, 3)

ax2 Z+ o Py

where fg; is a measure of the difference in the group velocity in
Eq. (3) from that in Eq. (2), and p, is the ratio of the dispersion
coefficients of the two fibers. When considering the assumption in
Refs. [17,19], Egs. (2) and (3) can be written as the NLSE coupled to an
external traveling wave field. In this case Eq. (2) modifies to

oy 1 Py _i[g(2)—a(2)]
oz T 2kg o2 T2 l<0n1F(z)x 2 v
+homaR@ Pyt ! (ﬂ)/z exp [ip(x, 2)] = 0 )

where 7(z) is the source of the fiber which contains the amplitude
part of y,. By introducing the normalized variables X =x/wy,
Z=2z/Lp,G =[g(@)—a@)]Lp, and U = (kon|Lp)/*y, with Lp = kw3
being the diffraction length associated with the characteristic trans-
verse scale wo = (kny)~ /4, Eq. (4) can be rewritten in a dimension-
less form:

?)LZ] %BX—LZJ+]F(Z)X2U+JR(Z)|U|2 = @UHM(Z) exp [io(X.2)+i0(X.2), (D)
where 0 =n;/|ny|= +1,and sp = — I<§wg denotes the source ampli-

tude. In the scaled form, the original phase ¢ is divided into two
parts, &(X,Z) and O(X, 2).

For the evolution of the optical pulse to be self-similar, the
functional form of the pulse's intensity must remain unchanged at
different propagation distances. When the pulse's width changes,
the local expansion velocity of the self-similar pulse is v=¢,X/¢
(¢ is a positive function of the propagation distance Z that
characterizes the change in the pulse's width), which is related
to the gradient of the pulse's phase as v= V@ [25]. Thus, the self-
similar pulse possesses a quadratic phase @ = ¢#,X?/(2¢), which
indicates that the pulse could be linearly chirped (77 0) or
unchirped (#7 = 0) for the self-similar evolution. Hence, the pulse's
intensity can be written as |U(Z, X)|? = exp [./f G(Z) dZ11Q(, 9% /¢,
with £=X/¢, where ¢ is a function of Z, which refers to the
transformed propagation distance.

Thus, by introducing the following self-similar transformation:

G ;
uzx=Sac o ew (£2¢) ©)

with G =exp [jbz G(Z')dZ, we can transform Eq. (4) into the
form of

dgf

3/
S;): (é) exp [i0(X, 2)]. (@)

From Eq. (7) it can be seen that by appropriately choosing the
relations between the functions F(Z),G'(Z), R(Z), and »(Z), one can
obtain various types of self-similar solutions for Eq. (5). For
example, the exact self-similar solutions for Eq. (5) can be
constructed by reducing Eq. (7) to the following driven NLSE with
constant coefficients:

. 1 .

IQ§+§ Q5.5+0'|Q|2Q—50 exp [i0(X,2)] =0, (8)
provided that the following relations,

a5 _ 1 _,-3(1 12 _

The exact analytical solution of Eq. (8) can be searched for
Q = p(0) exp [iO(X, Z)] with 0= ¢&—v¢, which yields the stationary
NLSE with a constant source:

1
j/)”+/4/1+6/)3—50 =0, (10)

where p=w+Vv?/2,0(X,Z) = v0—w¢, and the function p(#) can be
solved by using the Mobius transformations [26]. With this,
various types of analytical solutions to Eq. (8) can be found,
including the periodic wave solutions, trigonometric function
solutions, and soliton solutions.

Therefore, the exact self-similar solution of Eq. (5) can be
written as

U(Z,X)=\/E (0) exp [fo +i(vo— wg)} an

which exhibits different features for the choice of ¢. Interestingly,
the bright soliton solution can be obtained for ¢ =1, while the
dark soliton solution can be obtained for 6 = —1.

Here, as an example, we choose

R(Z) = 1+h sech?[5(Z — Zo)], (12)

which can be used to investigate nonlinear tunneling of soliton
through the nonlinear barrier (well) depending on the sign of the
parameter h (—1 < h <0 for well, and h > O for barrier) [8,27]. Here
the parameters h, s, and Zy describe the height of nonlinear barrier
(well), the width, and the longitudinal location, respectively. It is noted
that the last expression of Eq. (9) governs the modes of an inhomo-
geneous planar waveguide with the refractive index profile given by
the function FZ). From the theory of sech®-profile waveguides [28],
the lowest-order mode of such a waveguide corresponds to

F(Z)=1-2 sech®(2). (13)

which yields # = sech(Z). In this situation, the gain function is of the
form

2
6(2) = tanh (Z){ 1, 2ho coth@) tanh(s(Z — Z)] sech?[5Z - zo)]}

1+h sech?[8(Z —Zo)]
(14)
Especially, when h=0, Eq. (12) presents a homogeneous nonlinear

parameter, and the corresponding gain function G(Z) = tanh(Z). From
the first expression in Eq. (9) we find that the transformed
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