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a b s t r a c t

Based on the vectorial angular spectrum representation and stationary phase method, the explicit
expressions for the TE and TM terms and energy flux distributions of Gaussian beams carrying mixed
screw–edge dislocations in the far field beyond the paraxial approximation are derived and used to
study their far-field properties. It is shown that there are phase singularities of electric or magnetic
component and dark spots of energy flux distributions. By varying the controlling parameters such as
the dislocation slope, off-axis distance, waist width, the motion and pair-annihilation of phase
singularities and variations of energy flux distributions may appear. Under certain conditions, the phase
singularities and energy flux distributions are symmetric about the origin. A comparison with the
previous work is also made.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The optical beams carrying phase singularities have been
investigated extensively due to their theoretical importance and
attractive applications in optical manipulation, optical communi-
cation, high resolution interference microscopy and high resolu-
tion metrology, etc. [1–4]. There are three types of phase
singularities: the screw dislocation (vortex) with a spiral phase
ramp around the point of phase singularity, the edge dislocation
with π-phase shift located along a line in the transverse plane, and
the hybrid dislocation [5,6]. Rozas et al. examined the interaction
between optical vortices and the background field in linear and
nonlinear media [7]. He et al. explored the interaction of two edge
dislocations nested in a Gaussian beam in free-space propagation,
which showed that the edge dislocations may vanish, and two
noncanonical vortices with opposite topological charge may take
place [8]. Petrov studied the vortex–edge dislocation interaction
experimentally and theoretically and found that in the paraxial
regime this interaction induced the nucleation of additional
vortices of both topological charges in a linear media [9–11]. Yan
analyzed vortex–edge dislocation interaction in the presence of an

astigmatic lens and the dependence of vortex–edge dislocation on
the astigmatic coefficient and off-axis distance [12].

The theoretical and applicative study of laser beams has
increased from the paraxial regime to the non-paraxial regime
and from the scalar field to the vector field [13–15]. The vectorial
structure analysis of beams is important to the unique nature and
potential applications such as divergence high-power laser diodes,
microcavity lasers, etc. [16,17]. It is known that arbitrary polarized
electromagnetic wave can be expressed as a superposition of TE
and TM terms, which are orthogonal to each other and separable
in the far field [18]. The analytical methods for studying the
vectorial characteristics include perturbation expansion proce-
dure, angular spectrum, partial differential operators, non-
paraxial diffraction integral, etc. [19–24]. By means of the vectorial
angular spectrum representation and method of stationary phase,
the far-field properties of different beams such as Laguerre–
Gaussian beams, non-paraxial four-petal Gaussian beams, Her-
mite–cosine–Gaussian beams, helical hollow Gaussian beams in
free-space propagation were studied in detail [25–30]. The pur-
pose of this paper is to explore the far-field properties of Gaussian
beams carrying mixed screw–edge dislocations. In Section 2,
analytical expressions for the TE and TM terms of Gaussian beams
carrying mixed screw–edge dislocations in the far field beyond the
paraxial approximation are derived by using the methods of vector
angular spectrum and stationary phase. Sections 3 and 4 illustrate
the phase singularities of electric component and energy flux
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distributions in the far-field with numerical examples. Finally,
Section 5 summarizes the main results obtained in this paper.

2. Analytical vectorial structure

Considering a linearly polarized Gaussian beam carrying mixed
screw–edge dislocations at the source plane z¼0, the electric field
is expressed as [6,10]

Exðx; y;0Þ ¼ ðax�yþdÞðx�bþ iyÞexp �x2þy2

w2
0

 !
; ð1aÞ

Eyðx; y;0Þ ¼ 0; ð1bÞ
where a is the slope of edge dislocation, w0 is the waist width of
Gaussian beam, and d and b denote off-axis distances of edge
dislocation and vortex, respectively.

According to the Fourier transform, the vectorial angular
spectrum of the field is given by the following equation [25–30]:
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where k is the wave number related to the wavelength λ by k¼
2π/λ. The substitution from Eqs. (1a) and (1b) into Eqs. (2a) and
(2b) yields
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In accordance with the vectorial structure of electromagnetic
beams, an arbitrary polarized electromagnetic field can be decom-
posed into the TE and TM terms, i.e. [18],

EðrÞ ¼ ETEðrÞþETMðrÞ; ð4aÞ

HðrÞ ¼HTEðrÞþHTMðrÞ; ð4bÞ
where [25]
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r¼xiþyjþzk with i, j, k being unit vectors in the x, y, z directions,
respectively; γ¼(1�p2�q2)1/2; H denotes the magnetic field
vector; ε and μ are the electric permittivity and the magnetic
permeability of the medium, respectively.

In the far-field, the condition kr¼k(x2þy2þz2)1/2-1 is ful-
filled. Therefore, the stationary phase method is applicable

[25–30]. It follows from Eqs. (3a) and (3b) and (5a)–(5d) that
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Eqs. (6a)–(6d) represent the analytical vectorial expressions for the
TE and TM terms of Gaussian beams carrying mixed screw–edge
dislocations in the far field. They indicate that the far field
properties depend on the slope of edge dislocation a, waist width
of Gaussian beam w0, off-axis distances of edge dislocation and
vortex d, b, and the TE and TM terms are orthogonal to each other.

3. Phase singularities

The TE and TM terms of Gaussian beams carrying mixed screw–

edge dislocations in Eqs. (6a)–(6d) are separable in the far field.
The phase distributions of the electric and magnetic field compo-
nents can be obtained from Eqs. (6a)–(6d). Taking the x compo-
nent of ETE as an illustrative example we study the phase
singularities of electric field components. The contour lines of
phase are determined by

φ¼ arctan
Im½ETEx ðx; y; zÞ�
Re½ETEx ðx; y; zÞ�

� �
¼ const: ð7Þ

where Re and Im denote the real and imaginary parts of ETE x,
respectively. In the following numerical calculations, z¼1000λ and
ε/μ¼1 (in free space) are kept fixed.

Fig. 1(a)–(c) gives the phase singularities of the x component ETE x

for different values of the slope of edge dislocation a, where the
calculation parameters are b¼d¼0,w0¼0.5λ, a¼0 in (a), a¼2λ in (b),
a¼4λ in (c). It shows that for a¼0 two phase singularities A (0,
504.125) (marked “■”) and B (0, �504.125) (marked “●”) appear on
the y axis in the region (�600rx/λr600, �600ry/λr600) in
Fig. 1(a). They are located symmetrically about the x axis. By analyzing
the vorticity of phase contours, the topological charges of the phase
singularities aremA¼mB¼þ1. By varying the slope of edge dislocation
from a¼2λ in Fig. 1(b) to a¼4λ in 1(c), the phase singularities A
(�450.903, 225.452), B (450.903, �225.452) move to A (�489.073,
122.268), B (489.073, �122.268), respectively, where A and B are
symmetrical about the origin (0, 0). The positions (x, y) of phase
singularities of ETEx versus the slope of edge dislocation a in the region
(0ra/λr8) are plotted in Fig. 1(d), which indicates that with
increasing slope of the edge dislocation, the optical vortices approach
the x axis, and move away from the y axis.

The positions of optical vortices of the x component of ETE are
determined by

Re½ETExðx; y; zÞ� ¼ 0; ð8aÞ
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