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a b s t r a c t

The scattered waves by a resistive half-plane are investigated with defining reflection and transmission
coefficients for the diffracted waves. The coefficients are determined according to suitable conditions that
are derived from the boundary conditions and the limiting cases of the reflection and transmission
coefficients of the geometrical optics fields. The resultant field expressions are examined and compared
with the literature numerically.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The resistive surfaces are introduced in order to model a thin
dielectric layer. Some portion of the incident wave transmits
through the surface and the other one reflects by being multiplied
with a Fresnel type reflection coefficient. The resistivity of the
surface R is given by j/[ωd(ε�ε0)] whereω is the angular frequency
and d width of the layer [1]. ε represents the frequency dependent
dielectric constant of the layer and ε0 shows the permittivity of the
free space. The resistive boundary condition that constitutes
a relation between the magnetic and electric field intensities in
terms of a jump relation over the surface is defined in terms of R
[2]. The solution of the scattering problem of waves by a resistive
half-plane was first studied by Papadopoulos [3,4]. He considered
a pulse as the incident wave and examined the problem in the time
domain by using the Hilbert factorization method. The surface
current, induced on a resistive half-screen by an E-polarized
electromagnetic field, was evaluated by Senior [5]. The field
behavior, in the neighborhood of a resistive half-plane, was inves-
tigated by Braver et al. in 1988 by the multipole expansion of the
electromagnetic wave [6]. Volakis and Collins studied the diffraction
problem of waves by a resistive half-plane between two dielectric
media with the method of Wiener–Hopf factorization [7]. This
problem is important since the dielectric interface affects structure
of the transmitted wave from the resistive surface. Another scatter-
ing scenario, considered by Volakis, is the diffraction of waves by a
resistive half-plane, located on a resistive sheet [8]. The diffracted
field expressions were obtained by the same method. Finally a
solution of the scattering problem by the half-plane with resistive

boundary conditions was performed by Senior [9] with the method
of plane wave spectrum integral [10]. He expressed the diffracted
waves in terms of the Malyuzhinets function [11]. However, in
Ref. [12] we showed that this solution is not exact, because the field
expression of Senior is in the form

u¼ νðϕÞexpð� jkρÞffiffiffiffiffiffi
kρ

p ð1Þ

for u is the z component of the total diffracted electromagnetic field.
k is the wavenumber and (ρ, ϕ) are the length and angle elements
of the polar coordinates, respectively. v is a function ofϕ. One of the
resistive surface's boundary conditions can be written as

uþ ��
S ¼

1
2jkρη

∂uþ

∂ϕ
�∂u�

∂ϕ

� �
S

ð2Þ

where η is Z0/2R. Z0 and R are the impedance of free space and
resistivity of the scatterer, respectively. The superscripts þand �
represent the upper and lower parts of the resistive surface S. We
obtain the equation

vð0Þ ¼ 1
2jkρη

∂v
∂ϕ

����
ϕ ¼ 0

� ∂v
∂ϕ

����
ϕ ¼ 2π

 !
ð3Þ

when Eq. (1) is used in Eq. (2) for a half-plane, located at y¼0 and
x40. Note that v can only satisfy Eq. (3) if it is also a function of
ρ besides ϕ. Thus a diffracted field expression, as in Eq. (1), does not
satisfy the resistive boundary condition. Furthermore the diffracted
field representation of Senior does not compensate the disconti-
nuities of the geometrical optics (GO) fields at the transition regions
[12]. We extended the Malyuzhinets solution of the impedance half-
screen problem for the resistive boundary conditions and showed
numerically that the new diffracted field expression compensates
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the GO fields [13]. However this field also does not satisfy Eq. (2).
For this reason it also can not be a rigorous solution of the problem.

Our aim in this paper is to obtain a solution of the diffraction
problem of plane waves by a resistive half-plane that satisfies the
boundary conditions on the surface of the scatterer. There are
three GO waves in this problem, namely the incident, reflected and
transmitted [14]. Thus there will also be three diffracted waves
that compensate the discontinuities of the GO fields in the
transition regions. We will use the geometrical theory of diffrac-
tion (GTD) fields for the diffracted waves and multiply them with
unknown reflection and transmission coefficients that will be
determined according to boundary conditions and limiting cases
of the surface resistivity. The evaluated diffracted fields will be
examined numerically with the GO and scattered waves.

The scattering problem of waves by a resistive half-screen is
important, because the interaction process of waves by surfaces
that transmits and reflects the incoming radiation has important
areas of application in the literature. For example, Kats et al.
discusses a perfect absorbing system by using a thin lossy
dielectric layer on a perfect conductor [15]. They propose that
the width of the layer is much smaller than the wavelength of the
incident wave. A similar study put forth by Kats et al. by
demonstrating samples with dielectric coatings [16]. The idea
was also applied to thermal emittance of sapphire deposited with
vanadium dioxide [17].

A time factor of exp(jωt) is considered and suppressed
throughout the paper. ω is the angular frequency and t represents
time. j is defined by

ffiffiffiffiffiffiffiffi
�1

p
.

2. Definition of the problem and related conditions

We take into account a half-plane, located at y¼0 and x40.
The edge of the half-screen coincides with the z axis. A plane wave
of

ui ¼ u0exp ½ jkρ cos ðϕ�ϕ0Þ� ð4Þ

is incident on the surface. u0 is the complex amplitude and k
wavenumber. ϕ0 is the angle of incidence. The geometry of the
problem is given in Fig. 1. P is the observation point. The total field
u satisfies the resistive boundary conditions

ujϕ ¼ 0 ¼ ujϕ ¼ 2π ð5Þ

and

ujϕ ¼ 0 ¼
1

j2kρη
∂u
∂ϕ

����
ϕ ¼ 0

� ∂u
∂ϕ

����
ϕ ¼ 2π

 !
ð6Þ

on the surface of the half-plane [12]. The GO fields of the
scattering problem by the resistive half-screen are known and

can be written as

uGO ¼ uiGOþutGOþurGO ð7Þ
for uGO is the total GO wave. uiGO, utGO and urGO are the incident,
transmitted and reflected GO fields and can be defined by the
equations of

uiGO ¼ u0e�Uð�ξ� Þ; ð8Þ

utGO ¼ τu0e�Uðξ� Þ ð9Þ
and

urGO ¼ γu0eþUð�ξþ Þ ð10Þ
respectively [12,14]. e7 represents exp[jkρcos(ϕ7ϕ0)]. ξ7 is
�

ffiffiffiffiffiffiffiffiffi
2kρ

p
cos ½ðϕ7ϕ0Þ=2�. τ and γ are the transmission and reflec-

tion coefficients of the GO waves and can be defined by

τ¼ sin ϕ0

sin ϕ0þη
ð11Þ

and

γ ¼ � η
sin ϕ0þη

ð12Þ

respectively. The total field, scattered by the resistive half-plane, is
the scattered wave, which is the sum of the total GO and diffracted
waves. The total scattered field can be written as

u¼ uGOþud ð13Þ
where ud is the total diffracted wave that satisfies the boundary
conditions, given by Eqs. (5) and (6), on the surface of the half-
pane. Thus our problem is the determination of ud. The total
diffracted field can be decomposed into three diffracted wave
components as

ud ¼ uidþutdþurd ð14Þ
for uid, utd and urd are the incident, transmitted and reflected
diffracted fields that can be defined as

uid ¼ �expð� jπ=4Þ
2
ffiffiffiffiffiffi
2π

p 1
cos ðϕ�ϕ0=2Þ

expð� jkρÞffiffiffiffiffiffi
kρ

p ; ð15Þ

utd ¼
expð� jπ=4Þ

2
ffiffiffiffiffiffi
2π

p TðϕÞ
cos ðϕ�ϕ0=2Þ

expð� jkρÞffiffiffiffiffiffi
kρ

p ð16Þ

and

urd ¼ �expð� jπ=4Þ
2
ffiffiffiffiffiffi
2π

p RðϕÞ
cos ðϕþϕ0=2Þ

expð� jkρÞffiffiffiffiffiffi
kρ

p ð17Þ

respectively. We considered the relation between the GO and
diffracted waves, outlined by the geometrical theory of diffraction
[18], in the determination of the diffracted field components. The
diffracted field compensates the discontinuity of the GO wave at
the transition region. For this reason, the amplitude and phase of
the diffracted wave varies with the GO field according to
a determined ratio. For example the high frequency asymptotic
form of the incident scattered field is given by

uis ¼ e�Uð�ξ� Þ�
expð� jπ=4Þ

2
ffiffiffiffiffiffi
2π

p 1
cos ðϕ�ϕ0=2Þ

expð� jkρÞffiffiffiffiffiffi
kρ

p ð18Þ

for a perfectly conducting half-plane [19]. If the incident GO wave
is multiplied with a constant coefficient, the incident diffracted
field must also be multiplied with a function that is equal to the
constant coefficient at the shadow boundary, located at ϕ¼πþϕ0.
The transmitted and reflected diffracted waves are multiplied by
the functions of T(ϕ) and R(ϕ) with this aim. These two functions
are also dependent on ρ because of the reason, mentioned in the
context of Eq. (3). However this dependence will be not shown in
the arguments of the functions. T(ϕ) and R(ϕ) must satisfy some
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Fig. 1. Diffraction geometry of waves by a resistive half-plane.
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