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a b s t r a c t

The well-known Airy beams are generated when a transparency with a cubic phase put at the focal
distance from a spherical lens is illuminated by a Gaussian beam. In this case, a diffraction-free Airy beam
that propagates with acceleration on a parabolic path is generated behind the spherical lens's focus. We
have shown that directly behind the cubic-phase transparency there is a path section on which the Airy
beam is propagating with acceleration on a hyperbolic path. We refer to the Airy beam on the hyperbolic
path section as a Hyperbolic Airy (HA) beam. The HA beams notably show the linear divergence, the
nonuniform acceleration, rapidly decaying with distance, and the “center of gravity” shifting linearly
with distance in the absence of the linear phase in the initial field, with the acceleration being by an
order of magnitude higher than that of the Airy beam on the parabolic path section.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solution to the paraxial equation of propagation in the form
of Airy functions was first offered in Refs. [1–3]. The Airy beams
discussed in Refs. [1–3] possess an infinite energy. In [4–6] finite-
energy Airy beams in optics were analyzed. The solution of Eq.
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∂E
∂ξ

þ ∂2E
∂s2

¼ 0 ð1Þ

has been found in the form of a function [4]

E ðs; ξÞ ¼ Aiðs�ξ2=4þ iaξÞ exp ðisξ=2þ ia2ξ=2� iξ3=12�aξ2=2þasÞ ð2Þ
which takes the form of the exponentially apodized Airy function at
the input, ξ¼0:

E ðs; ξ¼ 0Þ ¼ AiðsÞexp ðasÞ; a40 ð3Þ
where s¼x/x0, ξ¼z/(kx02) are the dimensionless transverse and
longitudinal Cartesian coordinates, k¼2π/λ is the wavenumber, x0 is
an arbitrary transverse scale, Ai(x) is the Airy function, and a is
constant. The Airy beam can be produced by passing a Gaussian
beam through a phase transparency with cubic dispersion on the
transverse coordinate, followed by implementing the Fourier trans-
form with a spherical lens. This can be inferred from the Fourier
image of the input field (3):

~EðtÞ ¼ exp ð�at2Þexpðit3=3� ia2tþa3=3Þ ð4Þ
The key peculiarity of the Airy beam is that its major lobe

propagates along a curved trajectory, which has the form of a
parabola. However, it has been shown [7] that the “center of

gravity” of a finite-energy Airy beam in Eq. (3) is not displaced
upon propagation, with the accelerating effect occurring only at
small values of the parameter a{1. Analytic expressions for
different types of the accelerating beams, including the Airy beams
in the ABCD optical system have been obtained [8–10]. Propagat-
ing beams with their rays forming a desired caustic curve have
been examined [11–14]. Accelerating beams that propagate on a
circular and elliptic trajectory have also been studied [15–17].
To our knowledge there have been no publications handling the
Airy beams accelerating along a hyperbolic trajectory. In this work,
we show that in an optical setup conventionally employed to
generate the Airy laser beams of Eq. (2) there is a path section
found immediately behind the transparency of Eq. (4) on which the
Airy beam is propagating with acceleration on a hyperbola. We have
termed such a beam as the Hyperbolic Airy (HA) beam. While
lacking the property of being diffraction-free upon propagation on
the hyperbolic path, the HA beam shows a number of other notable
properties, such as having high acceleration (though rapidly decay-
ing with distance due to highly curved path) and preserving its
shape up to a scale, i.e. showing the linear divergence. We have
shown that the hyperbolic path is observed for both a paraxial
beam (Beam Propagation Method simulation, BPM) and a vector
beam (Finite-Difference in Time Domain simulation, FDTD). On the
hyperbolic path, the HA beams can also find use for micromanipu-
lation [18] and generation of curved plasma channels [19].

2. Diffraction of the Gaussian beam by cubic phase element

To analyze a beam which is generated in the Fresnel diffraction
zone of the phase transparency (4), let us write the complex
amplitude of the Gaussian beam directly behind the phase
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transparency:

Eðx;0Þ ¼ exp �ðx=wÞ2þ iαðx=x0Þ3þ iβðx=x0Þ
h i

; ð5Þ

where w is the Gaussian beam's waist radius and α and β are
dimensionless parameters of the phase transparency. Then, the
paraxial approximation of the light field amplitude at distance z is
given by

where z0¼kw 2/2 is the Rayleigh range. The relationship for the
complex amplitude (6) was derived by substituting the initial field
(5) into the Fresnel transform, separating out the perfect cube in
the integrand exponential function, and the subsequent represen-
tation of the Airy function in the integral form [20, identity
10.4.32].

The expression in Eq. (6) describes an HA beam. It is note-
worthy that while the propagation of the Airy beam in an ABCD
optical system was discussed in Ref. [8], a relationship similar to
Eq. (6) was not deduced and the possibility of the beam acquiring
the acceleration upon propagation on a hyperbolic path was not
discussed. The relationship in Eq. (6) suggests that unlike the
linear phase of the Airy beam (2), the HA beam has a quadratic
phase, thus experiencing the divergence upon propagation.
Besides, similarly to Eq. (2), the argument of the Airy function in
Eq. (6) is complex, although the z-dependence is different: the
value of the Airy function argument is in direct proportion to z2 in
Eq. (2) and in inverse proportion to z in Eq. (6). It is possible to
obtain the infinite energy Airy beams if the cubic phase transpar-
ency is illuminated by a plane wave (w-1) rather than a
Gaussian beam. Then, we obtain, instead of Eq. (6):

Because the phase relation remains quadratic, the beam in
Eq. (7) will diverge upon propagation. As opposed to the beam in
Eq. (6), the Airy function argument has become real, making it
possible to deduce an equation for the beam path. Putting the Airy
function's argument equal to values ym at which the function has
local maxima, we find: [β–kx0x/z–k2� 0

4/(12αz2)]/(3α)1/3¼ym. It
leads to explicit expression of the trajectory of the HA beam
maximum:

x¼
β�ym

ffiffiffiffiffiffi
3α3
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z
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� kx30

12αz
ð8Þ

3. Condition of beam acceleration

Unlike a parabolic trajectory of the beam (2), the HA
beam propagates along a hyperbolic path (8). The beam
exhibits acceleration on the path sections at which the first and

second derivatives have the same sign, i.e. (dx/dz)(d 2x/dz2)40,
or

β�ym
ffiffiffiffiffiffi
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Since both k and z are positive, considering two cases when
x30=α is positive or negative, we derive the following inequality:
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; ð9Þ

which can only be fulfilled if the right-hand side is positive, i.e.
sign(α)βoym(3|α|)1/3. In this case, the acceleration will occur at
distances

z4z1 ¼
kx20

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αðym

ffiffiffiffiffiffi
3α3

p
�βÞ

q ð10Þ

Unlike the beams (2), the acceleration is not uniform and
decreases as z–3. Let us analyze the following parameters:
x0¼λ¼532 nm, α¼ –1, β¼10, m¼0, y0¼–1.01879. In this case,
the condition (9) is satisfied, so that the trajectory has the
acceleration at z4z1E330 nm. The intensity pattern of Eq. (7) is
depicted in Fig. 1. The size of the computation domain in Fig. 1 is
–10λrxrþ10λ, 0rzr4λ. Fig. 2 depicts the intensity profiles in
the planes (a) z¼λ, (b) 2λ, and (c) 4λ.

4. Acceleration of the conventional Airy beam

For comparison, let us examine the Airy beam of Eq. (2) at a¼0.
Putting the Airy function's argument in Eq. (2) equal to values of
ym at which it has local maxima, the trajectory of the Airy beam
maximum can be explicitly expressed as x¼x0ymþz2/(4k2� 0

3).
From the equation, the beam is seen to have a uniform accelera-
tion equal to 1/(2k2� 0

3), while the Airy beam of Eq. (2) is seen to
be diffraction–free, because x1–x2¼x0(ym–yn) is independent of z.
Meanwhile for the HA beam, from Eq. (7) it follows that x1–
x2¼(3α)1/3z(ym–yn)/(kx0) and the beam shows a linear divergence
with increasing z (see Fig. 2). Fig. 3 shows the intensity pattern
from the field (2) for the following parameters: λ¼532 nm, x0¼λ/2.
The acceleration of the beam (2) at a¼0 equals 1/(π2λ), whereas for
the HA beam of Eq. (8) shown in Fig. 1, the acceleration at
z¼z1E330 nm is about 19.87/(π2λ). This is the reasonwhy the beam's
trajectory in Fig. 1 is more curved. Note that both beams in Fig. 1 and
Fig. 3 have been computed under the same conditions. The beams
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