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a b s t r a c t

We propose, for the first time, an efficient technique for the sensitivity analysis of photonic waveguide
structures with arbitrary shapes. Those waveguides are analyzed using the Finite Element Method (FEM). Our
technique uses the solution obtained by any FEM solver and without the need of performing any extra FEM
simulation, it gives accurate results for the sensitivity of the modal parameters with respect to all the design
parameters. This technique is far more efficient than the traditional numerical estimates of the sensitivities.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Finite Element Method (FEM) is favoured in solving
partial differential equations especially in complex structures
because it allows for flexible meshes depending on the shape of
the structure. FEM gives more accurate results than the tradi-
tional Finite Difference Methods (FDM) in extracting the electric
modal profile of optical waveguides and their respective propa-
gation parameters. In general, optical devices have many design
parameters affecting their modal parameters such as the refrac-
tive indices of their materials and the dimensions of their
subregions. It is desired not only to solve for the solution in a
certain arrangement but also to numerically calculate the
sensitivity of the solution with respect to changes in the design
parameters. Obtaining the sensitivity of the solution to design
parameters is essential in calculating some key functional
parameters such as the propagation loss of a waveguide, the
beating length of a directional coupler, the length of polariza-
tion converters and the imaging length of multimode interfer-
ence devices. They are also important for the manufacturing
process in order to calculate the yield analysis and tolerance.
Recently, sensitivity analysis for finite-difference-based solu-
tions has been introduced in photonics with good accuracy [1,2].
These sensitivity approaches are later utilized to engineering
the dispersion characteristics of photonic devices [3]. In addi-
tion, sensitivity analysis of microwave structures has been
introduced for both finite difference [3] and finite element
approaches. [4–8]. In general, no previous work has been done

on sensitivities of FEM solutions in photonics. In particular,
sensitivity analysis using FEM for modal analysis has never been
presented before for photonics applications.

In general, there is no analytical approach for estimating the
sensitivities of any response that is calculated using numerical
technique either FD or FEM. Thus, usually a numerical approxima-
tion using FDM is utilized for estimating the sensitivities numeri-
cally. However, this approach requires one extra simulation for
each design parameter if the Forward or Backward FDM is used. If
a higher accuracy is desired, central FDM is used but it requires
two extra simulations. Therefore, for a structure with N design
parameters, to get accurate results for the sensitivity using FDM
techniques, we need extra 2N simulations which is highly ineffi-
cient special for structures that is solved using FEM which requires
huge resources at each simulation.

In this paper, we present an efficient scheme for calculating the
sensitivities of FEM solutions which does not require performing
any extra FEM simulation. A preliminary illustration of this
approach was given in [9]. In this paper, a detailed analysis and
implementation of this approach are given here. In addition few
more examples that illustrate the universality of the approach is
also included in this paper. We start by proposing the theory of our
technique in Section 2. Then, we show the results of using this
technique in several waveguide examples in Section 3. Finally, the
conclusion of our work is presented in Section 4.

2. Theory and implementation

2.1. The wave equation as an Eigenvalue problem

The Wave equation in the Transverse Electric (TE) mode of the
waveguide can be written as

∇�∇� E�k20εrE¼ 0 ð1Þ
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where

k0 ¼
2π
λ
; ð2Þ

where λ is the wavelength of the wave in vacuum, εr is the relative
permittivity of the medium and E is the vector of transverse
electric fields. Using FEM, the waveguide can be thought of as
being meshed into triangles and the equation is solved locally in
the three nodes of each triangle. Therefore, the wave equation can
be transformed into a matrix operator form applied at the nodes of
the mesh [10].

KE¼ β2ME ð3Þ
where K and M are operator matrices, E is the transverse
eigenmode in the waveguide and β is the corresponding eigenva-
lue of the propagation constant. This can be written as

AE¼ β2E ð4Þ
where

A¼M�1K ð5Þ
Differentiating (4) with respect to the design parameter pi (where i
is the parameter index 1;2;…;N), we get

∂A
∂pi

EþA
∂E
∂pi

¼ 2β
∂β
∂pi

Eþβ2 ∂E
∂pi

ð6Þ

Multiplying both sides by the Hermitian conjugate of the left
Eigenfunctions EL, we get

EHL
∂A
∂pi

EþEHL A
∂E
∂pi

¼ 2βEHL
∂β
∂pi

Eþβ2EHL
∂E
∂pi

ð7Þ

Rearranging the terms gives us the expression for the sensitivity
of β [11].

∂β
∂pi

¼ 1
2β

EHL
∂A
∂pi

E

EHL E
ð8Þ

Furthermore, for scalar wave analysis, the system matrix is sym-
metric. This condition also holds for the semivectorial and vectorial
cases if the structures are weakly guided. For the semivectroial case,
our experience shows that the system matrix is nearly symmetric.
Therefore, assuming A is Hermitian for both scalar and semivec-
torial case, we get

EL ¼ E ð9Þ
and the expression simplifies to

∂β
∂pi

¼ 1
2β

EH
∂A
∂pi

E

EHE
ð10Þ

It is sometimes more convenient to normalize β by the wave-
number k0 to get the effective refractive index of the waveguide

neff ¼
β
k0

ð11Þ

Therefore, using (10) and (11), the expression for the sensitivity of
neff is

∂neff

∂pi
¼ 1
2βk0

EH
∂A
∂pi

E

EHE
ð12Þ

The expression shows that to get the sensitivity of neff, we only
need to have the derivative of the matrix A of the already done
simulation. Therefore, if we know the sensitivity of A with respect
to the wanted design parameter, no extra simulations are needed
compared to 2 extra simulations per parameter needed using
central finite difference schemes.

The derivative of A may be analytically available if the matrices
K and M are analytically differentiable with respect to the design
parameter. Then, we can utilize the chain derivative rule of (5) to
get

∂A
∂pi

¼ �M�1∂M
∂pi

M�1KþM�1∂K
∂pi

ð13Þ

In case K and M do not have analytical derivatives, then we utilize
perturbation theory to calculate their derivatives using the central
finite difference method (CFDM). The matrix A is obtained from
the stiffness matrices K and M using LU factorization. This process
is performed in order to obtain the original solution and readily
utilized for obtaining the sensitivity. We use CFDM to regenerate
the sensitivity of the matrix A with respect to any design
parameter pi around the original point but without solving
the eigenvalue system again. The derivative of matrix A is then
given by

∂A
∂pi

¼ AðpiþΔpiÞ�Aðpi�ΔpiÞ
2Δpi

ð14Þ

2.2. The AVM method

Our technique in estimating the sensitivity of FEM solutions is
called the Adjoint Variable Method (AVM) because it solves for the
sensitivity as an adjoint problem that is independent of the solver
of the initial problem. As obvious from (12), to perform the
sensitivity analysis of the original problem, the only parameters
needed are the FEM solution and its system matrix derivatives
(E, β, ∂A=∂pi). both E and β are already supplied by the FEM solver.
One advantage of the AVM, other than speed and efficiency, is not
requiring the FEM solver to solve the problem using a specific
algorithm. The solver can use either node or edge analysis and can
use any of the FEM different methods (Galerkin, Least Squares,
etc.). The AVM then uses the resulting E and β regardless of
the method of the solver. The system matrix (A) is then either
supplied by the solver (if the solver uses a relevant technique and
allows for making it available for users) or generated by the AVM
using a designed mesh that transforms the solution into the
matrices of the form of (3). The mesh is then perturbed to generate
the matrices Aðpi7ΔpiÞ and then calculate the matrix derivative
according to (14). In addition, the FEM solver can use the AVM to
extend its capabilities to include calculating the sensitivities as
part of the simulation using the analytic derivatives of their
system matrices as in (13) or by perturbing the mesh as in (14).
The implementation steps are illustrated in a flowchart diagram in
Fig. 1. In this flowchart, the main steps are: (1) the FEM of the
structure is solved using any FEM approach, in our case Glarkin
method for the Semivectorial case is implemented, (2) once the
system equation A is obtained from the original solution, the
design parameters are defined, (3) the dependant of the design
parameter on the system matrices is then examined order to
calculate the derivative of the system equation A. For analytical
dependance, the derivative of the matrix A can be obtained
analytically. Examples for such dependence include the refractive
index dependance which allow for obtaining analytical derivative
of the system matrices with respect to the change of the refractive
index change. A simpler approach is done by using perturbation
theory to obtain simple expression for the sensitivity as given in
(14) and (4) once the eigen values and eigen vectors are obtained
from step (1) and the derivative is obtained form step (4), the
sensitivity of the design parameters can be directly obtained from
(10) and (12). Finally, steps 3 and 4 are repeated till the sensitivity
of all the design parameters are obtained.
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