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a b s t r a c t

In this paper we experimentally implement the spatial shape modeling of nondiffracting optical beams
via computer generated holograms reconstructed optically by spatial light modulators. The results
reported here are an experimental confirmation of the so-called Frozen Wave method, developed a few
years ago. Optical beams of this type have potential applications in optical tweezers, medicine, atom
guiding, remote sensing, etc.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A few years ago, in a series of papers [1–4], an interesting
theoretical method was developed, capable to furnish nondiffract-
ing beams whose longitudinal intensity shape can be freely chosen
a priori.

This approach is based on suitable superpositions of equal
frequency and co-propagating Bessel beams, and the resulting
wave fields are called Frozen Waves1 (FWs), since they are more-
over endowed with a pre-chosen static envelope, within which
only the carrier wave propagates. Besides a strong control on the
longitudinal intensity pattern, this method also allows a certain
control on the transverse shape of the resulting beam.

Due to their unique characteristics, in particular their nondif-
fracting and spatial modeling properties, the FWs are quite
interesting for many applications such as optical tweezers, remote
sensing, atom guiding, medical purposes, etc. [5–7]

Very recently [8] the FW method was experimentally verified
through the experimental generation by a holographic method of
some FWs freely chosen in advance.

In this paper we present the experimental generation of several
new and very interesting FWs through the implementation of
amplitude computer generated holograms (CGHs) in spatial light
modulators (SLMs). Our results confirm, once more, the theoretical

predictions of the method developed in [1,2], and open exciting
possibilities on the applicability of these very especial beams.

In the next section we make a synthesis of the theoretical FW
method. After this, in Section 3, we show the experimental results
concerning the generation of several nondiffracting beams whose
spatial shapes are chosen in advance. The experimental generation
is made by amplitude computer generated holograms implemented
in two types of spatial light modulators, transmission and reflective.

2. Summarizing the theoretical Frozen Wave method

The theory of FWs was formulated in [1] and further improved
in [2–4].

Here we summarize the method without entering into the
mathematical details, which can be found in the references above.

To be brief, what we wish is to construct exact solutions to the
wave equation representing nondiffracting beams whose long-
itudinal intensity pattern, jFðzÞj2, in the interval 0rzrL can be
freely chosen a priori.

This can be done by considering a superposition of equal
frequency and co-propagating Bessel beams of order ν

Ψ ðρ;ϕ; z; tÞ ¼ e� iωt ∑
N

n ¼ �N
AnJνðkρnρÞeikznzeiνϕ ð1Þ

with

k2ρn ¼ k2�k2zn ð2Þ
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where k, kρn and kzn are the total, the transverse and the long-
itudinal wave numbers, respectively, of the nth Bessel beam in
superposition (1).

In expression (1) the following choice is made:

kzn ¼ Qþ2πn=L ð3Þ
where Q is a constant such that

0rQþð2π=LÞnrω=c ð4Þ
for �NrnrN.

The condition given by (4) ensures forward propagation only,
with no evanescent waves. The constant parameter Q can be
arbitrarily chosen, provided that (4) is obeyed, and it plays an
important role in determining the spot-size of the resulting beam.

Still considering Eq. (1), we adopt the following choices for the
coefficients An:

An ¼
1
L

Z L

0
FðzÞe� ið2π=LÞnz dz ð5Þ

where, as we said, jFðzÞj2 is the desired longitudinal intensity
pattern in the interval 0rzrL.

Now, it is important to notice that this longitudinal intensity
pattern can be concentrated, as much as we wish (respecting the
diffraction limit), over the propagation axis (ρ¼ 0), or over a
cylindrical surface.

In the case we wish such intensity to be concentrated over the
propagation axis, ρ¼ 0, zero order Bessel beams (i.e. ν¼ 0) are to
be used in the fundamental superposition (1). It is also possible to
choose the spot radius, Δρ0, of the resulting beam by making
Q ¼ ðω2=c2�2:42=Δρ2

0Þ1=2.
Alternatively, if we wish this intensity configuration to be

concentrated over a cylindrical surface, then higher order Bessel
beams, with νZ1, are to be used in (1). In this case, the radius ρ0

of the cylindrical surface can be approximately chosen, if we pick
up the value of Q given by

d
dρ

Jνðρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2�Q2

q
Þ

� �
ρ ¼ ρ0

¼ 0
�� ð6Þ

3. Experimental generation of Frozen Waves via holographic
method

The use of spatial light modulator devices in holographic setups
makes possible interesting applications in image phase correc-
tion, code signal encrypted and generation of optical beams
[9–12,8,13,14].

The experiments conducted by us to generate interesting types
of FWs are based on the holographic method. With the desired
beams described by analytical exact solutions of the wave equation
[15], we created an amplitude Computer Generated Hologram
(CGHs), which is reconstructed by a nematic liquid crystal spatial
light modulator (LC-SLM).

More specifically, once we have chosen the desired beam
spatial shape (i.e., the beam's longitudinal intensity pattern,
jFðzÞj2, and its spot radius or the radius of its cylindrical form), it
can be approximately described by the analytical and exact FW
solution in Eqs. (1) and (3)–(5). The amplitude CGH is constructed
from the FW complex field Ψ ðρ;ϕ; z; tÞ (called FW-CGH) at the
origin of the propagation axis, i.e. at ðz¼ 0Þ, and it is given by the
transmittance hologram equation

Hðx; yÞ ¼ 1=2fβðx; yÞþαðx; yÞ cos ½ϕðx; yÞ�2πðξxþηyÞ�g ð7Þ
where αðx; yÞ and ϕðx; yÞ are amplitude and phase of the FW
complex field Ψ ðρ;ϕ; z; tÞ, respectively. For reducing the noise of
the spectrum hologram signal, the conventional bias function
βðx; yÞ ¼ ½1þα2ðx; yÞ�=2 is taken as a soft envelope of the amplitude
αðx; yÞ [12]. To separate the different diffraction orders from the
encoded complex field Ψ ðρ;ϕ; z; tÞ, the off-axis reference plane
wave exp½i2πðξxþηyÞ is used. In the Fourier plane, the center of
the signal information is shifted to values ðξ;ηÞ of the spatial
frequencies and should be chosen according to diffraction effi-
ciency and bandwidth of the SLM [11,8].

To guarantee the efficient generation of the FW in the chosen
interval, we have used (to the FW-CGH) a circular aperture of
minimum diameter D given by

DminZ2L
k

kzn ¼ �N

� �2

�1

" #1=2

ð8Þ

The parameters Q and L give us, via Eq. (4), the maximum
number, 2Nmaxþ1, of Bessel beams in the superposition (1). If we
consider Q4k=2 (as usually occurs), then

Nmax ¼ ½Lðk�Q Þ=2π� ð9Þ
where ½�� is the floor function, i.e., Nmax is the greatest integer
smaller than or equal to Lðk�Q Þ=2π.

3.1. Holographic experimental setups

We have experimentally generated six different and interesting
FWs. In four of which it was used a transmission SLM, being the
other two created with a reflection one. The most significant
differences between them is the pixel resolution, and conse-
quently the bandwidth and effective display areas. We will see
later the implications of this difference in the holographic recon-
struction processes of the FW complex field.

In the experimental holographic setups for FW generation [see
Fig. 1(a) for the transmission SLM (Setup 1), and Fig. 1(b) for the
reflection SLM (Setup 2)], we adopt a He–Ne laser (632.8 nm) that
is expanded and collimated (“Exp”) on a SLM device. Here we use
the amplitude modulation with the polarizer Pol (angle 01) and
analyzer Anl (angle 901), measured with respect to the input axis
in the SLM. The 4-f spatial filtering system is used for the FW
experimental generation.

Fig. 1. (a) Experimental Setup 1; (b) Experimental Setup 2, for FW generation, where SF is a spatial filter, the L's are lenses, Pol is the polarizer, Anl is the analizer, CA is a
circular aperture mask, and CCD is the camera. In (a) SLM is a LC-2002 transmission modulator and (b) SLM is a LC-R1080 reflective modulator.
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