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a b s t r a c t

We study the dynamics of entanglement between the atom and the photonic band-gap (PBG) reservoir
modes, and also between the modes themselves by means of an entanglement density. We find that the
hybrid entanglement between the atom and the bath modes is restricted by the atomic and bath mode
populations as well as the detuning conditions. When the atomic transition frequency is outside the band
gap, the bipartite states can be created between the reservoir modes for short times. We also compare
the dynamics of entanglement between isotropic and anisotropic models and find out their differences
and analogies. The theoretical results could be applied to the implementation of quantum information
processing in nanostructured materials.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Composite qubit–oscillator system has been extensively studied
theoretically, due to its fundamental significance in modelling
accurately a wide variety of physical phenomena. As a notable
example, this system is a very successful tool for understanding the
interaction between matter and quantized radiation [1]. Recently,
the hybrid structures using both a qubit and a quantum harmonic
oscillator have been widely studied on quantum communication
and quantum information processing (QIP) [2–7]. This type of
hybrid architecture may be used to make up for the weaknesses
in both type of qubit structures, and has considerable applications
in QIP. These include the realization of hybrid communication via
qubit–oscillator states [8,9], the preparation of entangled states that
are robust against thermal noise [10,11], the realization of hybrid
quantum repeater [12], the measurement of geometric phases [13],
the proposal for full quantum computation [14] and many others. In
view of these and other proposals, current research focuses on
engineering hybrid quantum systems with strong-coupling char-
acteristics, and offering precise experimental control over their
mutual interactions.

In this spirit, many experimental platforms can be used to realize
qubit–oscillator models in the lab, such as the cavity QED [15–19], ion
traps [20], nanomechanical resonators [21], photonic crystal materials
[22], and so on. One of the greatest advantages of all these platforms is
having capability of reproducing fundamental light-matter interactions

on a larger scale, thus provides experimental conditions to explore
these interactions in parameter regimes. In this paper, we focus on
photonic crystal materials [23,24], which is one of the most promising
platforms for hybrid quantum information processing. The main
reason is that it can realize easily not only the strong coupling
between the atom and its radiation field in photonic crystals, but also
dynamical control of the qubit–oscillator interaction. It is well known
that photonic crystals are artificial materials with periodic refractive
index. Its PBG structures together with its unique dispersion relation-
ship make the atom-light manipulation much more efficient [25–27].
Furthermore, electric field [28], temperature [29] and magnetic fields
[30,31] can be used to tune the energy levels of atoms located in
photonic crystals. So far, PBGmaterials have been extensively used as a
method for implementing QIP ideas. For example, entanglement
trapping [32,33], hybrid quantum information protocols [34], on-chip
single-photon sources [35] and memory devices [36] can be realized
by exploiting PBG materials. In particular, some special quantum
phenomena have been found [37–39]. The ever increasing capability
for exquisite control of interactions between the atom and the PBG
reservoir on the experimental side, and the increasing applications of
PBG materials on QIP, require ever increasing accuracy in under-
standing the coupling between atom and the PBG reservoir.

It is in this spirit that we study the hybrid entanglement
between the atom and the PBG reservoir modes by means of
entanglement density [40], with the stated purpose of better
understanding this kind of interaction and investigating the new
features of entanglement induced by strong coupling. In our model,
a qubit is embedded in PBG materials, and the effects of decoher-
ence on hybrid entanglement in both isotropic and anisotropic
photonic crystals are considered. We find that, the detuning of the
atomic transition frequency from the PBG and the dispersion
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properties plays a crucial role in controlling this qubit–oscillator
hybrid entanglement. Furthermore, when the atomic transition
frequency is outside the band-gap edge, the entanglement between
reservoir modes can be induced. We also make a comparison to the
entanglement characteristics between isotropic and anisotropic
photonic crystals.

This paper is organized as follows: the theoretical model is
given in Section 2. Section 3 discusses the method of entangle-
ment density we adapted to characterize the hybrid entanglement.
Our results on the dynamics of entanglement under decoherence
are present in Section 4, including the total entanglement, the
entanglement between the atom and reservoir modes, and also
between the modes. We summarize our results in Section 5.

2. Dynamical model

we consider a two-level atom embedded in a photonic crystal
coupled to the radiation field. The transition frequency ω0

between the excited and the ground atomic states j1〉 and j0〉,
respectively, is assumed to be near the band edge of the PBG.
Performing the rotating wave approximation, the Hamiltonian for
the system is [41] ðℏ¼ 1Þ
H¼∑

k
ωka

†
kakþω0j1〉〈1jþ∑

k
gkða†kj0〉〈1jþakj1〉〈0jÞ; ð1Þ

where a†k and ak are the radiation field creation and annihilation
operators for the kth radiation mode with frequency ωk. The
atom–field coupling constant takes the form

gk ¼ω0d
1

2ε0ωkV

� �1=2

e!k � u!d: ð2Þ

Here d and u!d are the absolute value and the unit vector of the
atomic dipole moment, respectively, V is the sample volume, e!k

are the two polarization unit vectors and ε0 is the Coulomb
constant.

We assume that the qubit is initially prepared in its excited
state j1〉; and the radiation field is in the vacuum state jf0g〉. The
state vector of the system at an arbitrary time t then has the form

jψ ðtÞ〉¼ f aðtÞe� iω0t j1; f0g〉þ∑
k
f kðtÞe� iωkt j0; f1kg〉; ð3Þ

where j1; f0g〉 describes the atom in excited states j1〉 with no
photons in field modes. The state j0; f1kg〉 accounts for the mode k
of the reservoir being excited and the atom in its ground state j0〉.
Especially, the state vector jf1kg〉 of the radiation field is generated
in the process of spontaneous emission and may be regarded as a
normalized single-photon state. Since there is only a single
excitation in each reservoir mode, we can treat the reservoir states
as a set of qubits [42]. Substituting (3) into the Schrödinger
equation with Hamiltonian (1), we can obtain the following set
of coupled equations:

i
∂
∂t

f aðtÞ ¼∑
k
gk f kðtÞe� iðωk �ω0Þt ; ð4Þ

i
∂
∂t

f kðtÞ ¼ gk f aðtÞeiðωk �ω0Þt : ð5Þ

By formal time integration of Eq. (5), and using the Laplace
transform, we can obtain the Laplace transforms ~f aðsÞ for the
amplitudes f aðtÞ:

~f aðsÞ ¼
1

sþΓ
; ð6Þ

where Γ ¼∑kg2k=½s� iðω0�ωkÞ� is the Laplace transform of the
delay Green's function[43] Gðt�t′Þ ¼∑kg2ke

� iðωk �ω0Þt� t′. In the
following subsections, we present the calculation of f aðtÞ for the
isotropic and anisotropic photonic crystals.

2.1. The isotropic photonic crystal

In an isotropic photonic crystal, the photon dispersion relation
can be expressed approximately by [41]

ωk �ωcþAðk�k0Þ2; A�ωc=k
2
0 � c2=ωc; ð7Þ

where ωc is the upper band-edge frequency and k0 is a constant
characteristic of the dielectric material. Such dispersion relation is
valid for frequencies close to the upper photonic band edge and
associates the band-edge wave vector with a sphere in k space,
jkj ¼ k0 [44]. Using this dispersion relation, and the method in Ref.
[45], we have

ΓðsÞ ¼ β3=2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� is�δ

p ; ð8Þ

where β3=2 ¼ ½ðω0dÞ2=6πε0�ðk30=ω3=2
c Þ, and δ¼ω0�ωc . Note that

the phase angle of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� is�δ

p
has been defined as �π=2o

argð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� is�δ

p
Þoπ=2. The amplitudes f aðtÞ can be calculated by

means of the inverse Laplace transforms

f aðtÞ ¼
1
2πi

Z sþ i1

s� i1
~f aðsÞest ds; ð9Þ

where s is a real constant that exceeds the real part of all the

singularities of ~f aðsÞ. With the help of the residue theorem, the
amplitudes f aðtÞ can be rewritten as [46]

f aðtÞ ¼∑
j

1

A′ðxð1Þj Þ
ex

ð1Þ
j tþ∑

j

1

B′ðxð2Þj Þ
ex

ð2Þ
j t

þeiδtβ3=2

π

Z 1

0
dx

ffiffiffiffiffiffiffiffiffi
� ix

p
e�xt

iβ3�xð�xþ iδÞ2
; ð10Þ

where functions AðxÞ and BðxÞ are defined as

AðxÞ ¼ xþ β3=2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ix�δ

p ; ð11Þ

BðxÞ ¼ xþ β3=2ffiffiffiffiffiffiffiffiffiffiffiffi
ixþδ

p : ð12Þ

Here xð1Þj are the purely imaginary roots of the equation AðxÞ ¼ 0
in the region ½Reðxð1Þj Þo0 and Imðxð1Þj Þoδ�, xð2Þj are the complex
roots of the equation BðxÞ ¼ 0 in the region ½Reðxð2Þj Þo0 and
Imðxð2Þj Þoδ�, and the functions A′ðxÞ and B′ðxÞ are defined as
A′ðxÞ ¼ ðd=dxÞAðxÞ and B′ðxÞ ¼ ðd=dxÞBðxÞ.

2.2. The anisotropic photonic crystal

As one know, there is no physical PBG material with an
isotropic gap, and it is instructive to consider a more realistic
anisotropic model. In this model, the dispersion relation is
modified strongly by the periodic dielectric structure, and the
band edge is associated with a point k¼ kðmÞ

0 . The photon–disper-
sion relation can be expressed by ωk ¼ωcþAðk�kðmÞ

0 Þ2, character-
istic of a three-dimensional phase space [47]. Using this dispersion
relation, the parameter Γ can be written as

ΓðsÞ ¼ iγ3=2ffiffiffiffiffiffi
ωc

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� is�δ

p ;

with

γ ¼ ω2
0d

2ε0ℏA
3=2

8π
∑m sin 2 θm

� �" #2=3
;

and θm is the angle between the atomic dipole moment u!d and
the mth wave vector kðmÞ

0 [45]. In the same manner as isotropic
calculation, the amplitudes f aðtÞ of the anisotropic photonic crystal
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