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a b s t r a c t

Atomic coherence effects with a strong standing-wave coupling field on a four-level system of hot Rb
atoms are investigated. Amplitude modulation and phase modulation of the strong standing-wave field
are coherently coupled in linear and nonlinear atomic polarizations in various multi-wave mixing
processes. Such coupled atomic coherence effect leads to one-photon triple-bandpass filters in an
electromagnetically induced transparency structure and two-photon bandgaps at two different wave-
lengths under two-photon resonance in the hot four-level Rb atoms. Such system can be useful for
dispersion compensation in multi-channel WDM systems, all-optical switching and optical filters at
multiple wavelengths.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there are many works on coherent interactions
between a strong standing-wave field and multi-level atoms for
various applications, such as storage of light pulses [1], measure-
ment of coherent properties of Bose–Einstein condensates [2],
atomic interferometry [3,4], subwavelength localization of atoms
[5], all-optical switching [6], diffraction-type electromagnetically
induced grating (EIG) [7], dynamic controllable dispersion com-
pensation [8], enhanced nonlinearities at low light intensities
[9,10] and manipulation of light pulses by enhanced nonlinearities
[11]. Here, an inverted Y-type four-level atomic system, as shown
in Fig. 1, is employed to investigate fundamental physical mechan-
isms for forming photonic bandgaps using atomic coherence
induced by a standing-wave driving field, which can help in
designing appropriate coherent systems to achieve one-photon
multi-channel filters or multi-photonic bandgaps.

It is well known that atomic coherence induced by a strong
traveling-wave field can be used to manipulate the absorptive and
dispersive properties of the probe field to generate the phenomenon
of electromagnetically induced transparency (EIT) [12–15]. Taking a
three-level ladder-type system as an example, by applying a strong
electromagnetic field to dress the upper two bare states, an opaque
transition can be made transparent to the weak probe field at its
resonant frequency. The real and imaginary parts of the susceptibility
for the atomic medium can be expressed as a function of jΩcj2 [14,15],

where the Rabi frequency of the traveling-wave field Ωc ¼ gijEc , in
which 2ℏgij (i; j¼ 1;2;3) are the dipole-matrix elements of atomic
transitions and Ec is the slowly varying amplitude of the coupling field.
When a standing-wave field is employed in place of the traveling-
wave field, the expression for Rabi frequency is changed to be
Ωc ¼Ωþ e� ikc :zþΩ� eikc :z, whereΩ7 are the forward and backward
components which form the standing-wave field and kc is the wave
vector. With the standing-wave driving field, the refractive index of
the medium is then periodically modulated along the propagating
direction (z) for the probe field. Since jΩcj2 ¼ jΩþ j2þjΩ� j2þ
jΩþ jjΩ� je�2ikc :zþ jΩþ jjΩ� je2ikc :z for the standing-wave driving
field, atomic coherence induced by this standing-wave field has both
amplitude (the former two terms) and phase (the last two terms)
modulations. For the diffraction-type EIG [7], atomic coherence caused
by the amplitude-modulation terms exerts over the probe field just as
an amplitude grating does, and the effect of phase modulation leads to
a dispersive relation for the probe field as modulated by a dispersive
grating. For the transmission-type EIG to form photonic bandgaps
[8,16], effects due to mixed amplitude and phase modulations on the
probe field will be discussed.

Considering an inverted Y-type four-level system as shown in
Fig. 1, the bare atomic energy levels |14 , |24 , |34 and |44
correspond to |5S1/2, F¼14 , |5S1/2, F¼24 , 5P3/2 and 5D3/2 states of
the Rb atoms, respectively. The strong standing-wave field Ωc is
formed by two counter-propagating fieldsΩ7 in z direction, which
keeps on resonance with the atomic transition |34–|24 . Two
probe fields Ωp1 and Ωp2 drive the atomic transitions |34–|14
and |44–|34 , respectively. In order to utilize Doppler-free con-
figuration for each component in the standing wave in hot atoms
[15], two probe fields Ωp1 and Ωp2 are chosen to propagate along
the z and –z axis in the medium, respectively. Such four-level
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system in Fig. 1 has potential to generate one-photon triple-
bandpass channels or two-photon bandgaps, and it can be made
into two different configurations according to these specific
situations. WhenΩp2 is kept on resonance with the corresponding
atomic transition and is as strong as the standing-wave fieldΩc , as
shown in Fig. 1(a) (thereafter called the EIT structure), levels |14 ,
|34 and |44 form a traditional ladder-type EIT system [15].
However, when the probe beam Ωp2 scans into two-photon
resonance with the weak probe field Ωp1 and keeping
Δp1þΔp2 ¼ 0, as shown in Fig. 1(b), atomic coherence induced by
the strong standing-wave fieldΩc takes effect on the two resonant
wavelengths, therefore we refer such system as a two-photon
resonance structure. For both EIT and two-photon resonance
structures, with the strong field Ωc on, level |34 is viewed as a
coherent superposition of two split dressed states |2d4 and |3d4
and the frequency interval of the two dressed states is 2Ωc . In the
EIT structure, because a resonant strong Ωp2 is applied, |2d4 and
|3d4 further split into four levels as shown in Fig. 1(a), where
j2d7Z cos nθ� j2d47 sin θ� j44Þ and j3d7Z cos nθþ

j3d47 sin θþ j44Þ with tgðθ7 Þ ¼ 7 jΩc jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩp2 j2 þjΩc j2

p
Ωp2

[17].

Therefore, in such inverted Y-type [18,19] or Y-type system
[20,21], when Ωc is used as a strong traveling-wave field, two-
photon resonant absorption will be inhibited for the two probe
beams Ωp1 and Ωp2 [18,20] (in two-photon resonance structure)
or one-photon triple EIT pathways are produced [21] due to
destructive interferences between three-photon and five-photon

nonlinear processes (in the EIT structure). The scheme used in
the current work is different from those in Refs. [18–21] since the
traveling-wave coupling field is replaced by a standing-wave field
Ωc . If one neglects the effect of phase modulation terms in the
standing-wave field, the amplitude modulation terms of
the standing-wave field will have the same impact on the two probe
fields as the traveling-wave field does since they have the same
expressions (except double the strength). However, when both the
amplitude and phase modulations are considered, a standing-wave
grating is formed [8,11], and two new fields are generated by the
phase modulation terms under phase-matching conditions.
The frequencies of the generated fields are the same as those of
the two probe fieldsΩp1 andΩp2, but they propagate in the opposite
directions relative to Ωp1 and Ωp2, respectively. Meanwhile, with
respect to the polarizations of Ωp1 and Ωp2 with the standing-wave
drive, contributions from the generated fields are included in order to
satisfy the momentum conservation or phase-matching conditions.
This means that the coupled coherences between Ωp1, Ωp2 and the
generated fields are induced by the phase modulation of the
standing-wave field. The coupled coherences result in destructive
interferences between phase and amplitude modulations, and thus
create narrow two-photon bandgaps at two resonant wavelengths in
the two-photon resonance and one-photon triple-bandpass channels
in the EIT structure, respectively.

In the interaction picture, the Hamiltonian of the system in
bare states is given as follows:

H¼ �ℏΔp1j34o3j�ℏΔp2j44o4j�ℏΩcj34o2j
�ℏΩp1j34o1j�ℏΩp2j44o3jþc:c: ð1Þ

where Δp1 ¼ ðωp1�ω31Þ and Δp2 ¼ ðωp2�ω43Þ are frequency
detunings of the probe fields Ωp1 and Ωp2 with corresponding
atomic transitions and Rabi frequencies of the respective incident
lasers as Ωp1 ¼Ω1e� ikp1�r , Ωp2 ¼Ω2eikp2�r , Ω1 ¼ g31Ep1,
Ω2 ¼ g43Ep2. The Rabi frequency of the strong standing-wave
driving field is Ωc ¼Ωþ e� ikc�zþΩ� eikc�z; Ω7 ¼ g32E7 . 2ℏgij
(i; j¼ 1;2;3;4) are the dipole-matrix elements for the atomic
transitions; Ep1;p2;7 are slowly-varying field amplitudes, while
kp1;p2 and kc are wave vectors of the two probe fields and
standing-wave drive field, respectively.

The density–matrix equations of this system are governed
by [22]:

_ρ21 ¼ �ðγ21� iðΔp1�ΔcÞÞρ21� iΩn

cρ31þ iΩp1ρ23

_ρ31 ¼ �ðγ31� iΔp1 Þρ31� iΩcρ21� iΩn

p2ρ41þ iΩp1ðρ33�ρ11Þ
_ρ41 ¼ �ðγ41� iðΔp1 þΔp2ÞÞρ41� iΩp2ρ31þ iΩp1ρ43

_ρ32 ¼ �ðγ32� iΔcÞρ32� iΩn

p2ρ42� iΩp1ρ12þ iΩcðρ33�ρ22Þ
_ρ42 ¼ �ðγ42� iðΔp2þΔcÞÞρ42þ iΩcρ43� iΩp2ρ32

_ρ43 ¼ �ðγ43� iΔp2Þρ43þ iΩn

cρ42� iΩn

p1ρ41þ iΩp2ðρ44�ρ33Þ
_ρ33 ¼Γ4ρ44�Γ3ρ33� iΩn

p1ρ31� iΩn

Cρ32þcc:

_ρ44 ¼ �Γ4ρ44� iΩn

p2ρ43þcc: ð2Þ

Under the assumption of a weak probe fieldΩp1 at all time, one
can assume ρ22 ¼ 0, and therefore ρ11 ¼ 1�ρ33�ρ44. In the
absence of collisions, γij ¼ ðΓiþΓjÞ=2, where Γi is the natural
decay rate of level |i4 . Since Eq. (2) cannot be solved exactly,
we apply the perturbation method to solve it sinceΩp1 is assumed
to be weak enough. We keep all terms of the strong fields Ωc and
Ωp2 in Eq. (2) and take only the lowest order of amplitude for the
weak probe fieldΩp1. The steady-state solutions of Eq. (2) are then
required to be in the form of [23]:

ρij ¼ ρð0Þ
ij þΩp1ρ

ð1Þ
ij þΩn

p1ρ
ð�1Þ
ij ði; j¼ 1;2;3;4Þ ð3Þ
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Fig. 1. An inverted Y-type four-level system in bare and dressed states (inside
dotted boxes) for (a) EIT one-photon multi-channel structure and (b) two-photon
resonance structure.
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