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a b s t r a c t

Nonlinear resonant structures consisting of coupled ring resonators can be modeled by difference-
differential equations that take into account non-instantaneous Kerr response and the effect of loss. We
present a simple and efficient numerical formalism for solution of the system and calculation of the time
evolution. The technique is demonstrated by investigating the dynamical behavior of the coupled
structure with two rings, namely, focusing on self-pulsing solutions. The influence of both, loss and non-
instantaneous Kerr response, is also presented.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A number of interesting dynamical phenomena can occur in
optical systems with nonlinear feedback. Such systems, typically
nonlinear cavities, can, within a certain range of input optical
power, exhibit optical bistability (or even multistability), a phe-
nomenon which is expected to play an important role in data
processing applications. With a further increase of power, the
systems may exhibit generation of optical pulses from continuous
wave input (self-pulsing) and chaos. The nonlinearity is often
provided by the Kerr effect, in which the intensity of propagating
light alters the refractive index of the medium.

The chaotic behavior is related to the instability that was first
investigated by Ikeda [1] in a single ring resonator. Under suitable
conditions, namely for the finite relaxation time of the nonlinear
response, the Ikeda instability can lead to self-pulsing (SP) [2].
These predictions were experimentally confirmed with a hybrid
optically bistable device [3]. Similar effects were found in a
nonlinear Fabry–Perot resonators [4] and distributed feedback
structures [5,6]. The impact of the relaxation time was recently
studied in Ref. [7]

Other nonlinear mechanisms can also induce the mentioned
effects. For various types of optical microcavities, e.g., silicon
microring resonators, the nonlinear effect is not only provided
by the Kerr effect but also by the free carrier absorption (FCA) and

free carrier dispersion (FCD) through the two-photon absorption
(TPA) effect [8–13].

It is well-known that nonlinear effects are enhanced in
coupled-cavity systems [14,15]. Coupled cavities with instanta-
neous Kerr response exhibit rich dynamics and offer more control
over nonlinear switching, SP and chaos [16–20]. In particular, SP
and chaos were observed in systems with two and three coupled
microcavities [18]. For two-cavity systems, SP can be explained as
a result of beating of modes and bistable switching [19]. However,
SP can also be related to gap solitons [18]. For long microring
chains, spontaneous generation of gap solitons from cw input was
studied in Ref. [21].

In this paper, we focus on simulation of coupled ring resona-
tors. Compared with the publications regarding coupled-cavity
systems, we take into account non-instantaneous Kerr response.
We also introduce the effect of loss which has not been considered
in such systems so far.

Often, the simulation of nonlinear cavities is performed by coupled
mode theory in time [18,19,7,22]. The technique can treat different
kinds of cavities in the samemanner. However, its validity is limited to
the case of weak coupling [23]. Here we describe an alternative
approach that can be used for ring resonators. We generalize the map
presented in Ref. [2] and obtain a system of difference-differential
equations. We formulate an efficient numerical technique for the
solution of the system. The paper is organized as follows: In Section 2,
we introduce the model and theoretical formulation. In Section 3, we
demonstrate the technique by presenting the dynamical behavior of a
system with two rings. The effect of loss as well as the effect of
instantaneous and non-instantaneous Kerr response is also presented.
Finally, in Section 4 we conclude the paper.
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Optics Communications 318 (2014) 147–151

www.sciencedirect.com/science/journal/00304018
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2013.12.035
http://dx.doi.org/10.1016/j.optcom.2013.12.035
http://dx.doi.org/10.1016/j.optcom.2013.12.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.12.035&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.12.035&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2013.12.035&domain=pdf
mailto:petracek@fme.vutbr.cz
http://dx.doi.org/10.1016/j.optcom.2013.12.035


2. Model and theoretical formulation

Consider a structure consisting of N coupled ring resonators
side coupled with two waveguides as shown in Fig. 1. All the
resonators are identical and made from the same single mode
waveguide as the two waveguides. Aj, Bj, Cj and Dj represent the
time-dependent (slowly varying) mode amplitudes at different
positions in the rings or waveguides. The amplitudes are scaled to
dimensionless form, as will be explained below. The presented
model is valid for unidirectional propagation of modes, i.e. the
structure is excited at the input and/or add port. In the subsequent
numerical calculations (Section 3), however, we will always
suppose excitation only at the input port, thus CNþ1 ¼ 0.

Similarly as in [24,25], we assume that the coupling is lossless
and localized at a single point. Then, by using the notation in Fig. 1,
the interaction in each coupler (in time t) is given by

BjðtÞ ¼ rjAjðtÞþ isjCjðtÞ; ð1Þ

DjðtÞ ¼ isjAjðtÞþrjCjðtÞ: ð2Þ

Here, isj and rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�s2j

q
, (j¼ 1;2;…;Nþ1), are respectively the

coupling and transmission coefficients which describe each cou-
pler [24,25].

The structure exhibits Kerr nonlinearity, i.e., in the stationary
state, the nonlinear change of the effective mode index at a certain
position in the ring (or waveguide) is given by the relation of type
n2jA0

jj2, where n2 is the effective nonlinear Kerr-index (it is
assumed to be constant in all rings/waveguides) and A0

j is the
physical amplitude of the mode at this position. However, instead
of A0

j we use the dimensionless amplitude Aj defined by the
relation Aj ¼ ð2πn2Leff=λÞ1=2A0

j, where Leff ¼ ½1�expð�αLÞ�=α is
the effective length, α is the waveguide loss coefficient (it includes
all possible linear loss mechanisms, such as material absorption or
scattering), L is the half of the ring circumference, and λ is the
wavelength of the light in vacuum. The same scaling applies for
the amplitudes Bj, Cj and Dj. In accordance with these definitions,
we define powers at the input, through, and drop ports by the
relations Pin ¼ ðL=Leff ÞjA1j2, Pt ¼ ðL=Leff ÞjB1j2, and Pd ¼ ðL=Leff Þ
jDNþ1j2, respectively. In this way, the powers are directly related
to the physical amplitudes and can also be used as a measure of
nonlinearity strength.

Optical pulse propagation in a nonlinear dispersive media is well-
described by Maxwell0s equations [26,27] taking into consideration
nonlinear polarization and applying the slowly varying-envelope
approximation. In the presence of Kerr-nonlinearity and waveguide
loss, the relations between mode amplitudes in Fig. 1 are

CjðtÞ ¼ Bjþ1ðt�τÞ exp �αL
2
þ iϕþ iβjþ1ðt�τÞ

� �
; ð3Þ

Ajþ1ðtÞ ¼Djðt�τÞ exp �αL
2
þ iϕþ iδjðt�τÞ

� �
: ð4Þ

Here, 1r jrN, τ¼ ngL=c is the group delay corresponding to
propagation of the pulse over distance L, ng is the mode group index
and c is the velocity of light. Note that, the free spectral range, FSR, is
related with the group delay by the relation τ FSR¼ 1=2.
ϕ¼ 2πneffL=λ is the linear phase shift acquired over distance L, neff

is the linear effective mode index. The shift can be expressed as
ϕ¼ πðmþΔf =FSRÞ, where m is an arbitrary positive integer and Δf
is the frequency detuning from resonance. In the following analysis,
we will always assume evenm (adaption of the formulation for oddm
is obvious) and thus ϕ in Eqs. (3) and (4) can be replaced by
π Δf =FSR.

Nonlinear phase shifts βj and δj are given by the response of the
medium. Here, we assume the Debye relaxation [1,2,28]

TR
dβjðtÞ
dt

þβjðtÞ ¼ jBjðtÞj2; ð5Þ

TR
dδjðtÞ
dt

þδjðtÞ ¼ jDjðtÞj2; ð6Þ

where TR is the medium relaxation time.
The above system of the difference-differential equations

(Eqs. (1)–(6)), which is a generalization of the Ikeda equations
for single ring [2,3], fully describes the time evolution of the
amplitudes Aj, Bj, Cj, Dj and nonlinear phase shifts βj, δj from given
initial conditions.

The system can be readily solved in the approximation of
instantaneous response. In this case, we consider the limit TR{τ
and assume the solutions of Eqs. (5) and (6) in the form βjðtÞ ¼ jBjðtÞj2
and δjðtÞ ¼ jDjðtÞj2. Consequently, the whole system is reduced to a
system of difference equations which appear, e.g., in Ref. [21].

For obtaining of the steady-state solutions (time independent
solutions) of Eqs. (1)–(6), we assume no signal at the add port,
CNþ1 ¼ 0, and arbitrarily choose the amplitude at the drop port
DNþ1. Then, the other amplitudes are calculated step by step with
using Eqs. (1)–(4), finally the amplitudes A1 at the input and B1 at
the through port are found. Note that in the steady state, solutions
of Eqs. (5) and (6) are formally the same as in the approximation of
instantaneous response.

Stability of the steady-state solutions was investigated by using
the linear stability analysis. To this aim, we assumed the approx-
imation of instantaneous response and calculated the eigenvalues
of the Jacobian. The given solution is stable if and only if the
absolute value of any eigenvalue is less than 1 [3].

In the general case of non-instantaneous response, we need an
efficient technique for the numerical integration of Eqs. (5) and
(6). To this aim, we write solution of Eq. (5) in the form

βjðtÞ ¼ jBjðtÞj2þexp � t
TR

� �
βjð0Þ�jBjð0Þj2
h i

�
Z t

0
exp

t0 �t
TR

� �
djBjðt0Þj2

dt0
dt0: ð7Þ

Fig. 1. Coupled ring resonators with four ports labeled. Each coupler is described by the parameter sj. Aj, Bj, Cj and Dj represent mode amplitudes. Arrows indicate
propagation of the modes.
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