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a b s t r a c t

We use Hamiltonian ray tracing and phase-space representation to describe the propagation of a single
spatial soliton and soliton collisions in a Kerr nonlinear medium. Hamiltonian ray tracing is applied using
the iterative nonlinear beam propagation method, which allows taking both wave effects and Kerr
nonlinearity into consideration. Energy evolution within a single spatial soliton and the exchange of
energy when two solitons collide are interpreted intuitively by ray trajectories and geometrical shearing
of the Wigner distribution functions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatial solitons, where optical beams travel without divergence
or convergence in a nonlinear medium, have been theoretically
presented and experimentally demonstrated in various physical
systems [1–6]. Many applications have been proposed for solitons
and their interactions, including optical-fiber communication
systems [7], “gateless” computers [8], and soliton navigation [9].
Although theoretical methods, e.g. inverse scattering theory, exist
for a few special cases [10], in others, it is not an easy task to
predict soliton0s behavior. Thus, one has to use numerical meth-
ods, such as split-step Fourier method [11]. In particular, energy
exchange during soliton collisions has been under extensive
research [10,12], but much remains unknown, especially the
detailed evolution of power flow during collisions. In this paper,
we present a novel perspective on the propagation of spatial
solitons and the energy interactions during multi-soliton collision,
using ray tracing and phase-space representations.

Since rays represent power flows, ray diagrams are physically
intuitive and provide useful insights for the evolution of energy
during a nonlinear optical phenomenon. In addition, ray tracing is
easy to interpret with traditional optical terms such as ray-
intercept plots and aberrations. As a result, we expect ray
description to be highly beneficial for understanding complex
nonlinear phenomena. However, traditional ray tracing method

cannot take wave effects such as diffraction and interference into
consideration [13]. Furthermore, solving ray-tracing equations in
Kerr nonlinear media is not straightforward because of the
coupling between optical intensity and refractive index. In this
paper, we propose to calculate ray trajectories using the iterative
nonlinear beam propagation method [14]. This method provides a
rigorous way to include both wave effects and nonlinearity into
the ray-tracing results. Wave effects are considered by applying
the Wigner distribution function (WDF) to Hamiltonian ray tracing
as the initial condition of the rays. Kerr nonlinearity, where the
refractive index changes according to the local optical intensity [15],
is included by an iterative process which updates the refractive
index and intensity profiles at each iteration. The WDF [16–18] is a
phase-space representation of the coherence property of an optical
beam. It defines a generalized ray picture, known as the generalized
radiance, which is a function of position and momentum [19]. Along
each ray, the radiance is conserved [18]. The optical intensity at any
point of space can be calculated from the WDF through a projection
along the momentum direction. The iterative nonlinear beam
propagation method has been previously shown as a versatile tool
for the design of nonlinear optical devices [20]. Here we show that
the same method can provide useful physical insight of spatial
soliton0s propagation, collision and evolution with the use of ray
diagrams and rigorous consideration of wave effects through
the WDF.

In this paper, Hamiltonian ray diagrams and phase-space
representations of spatial solitons and multi-soliton collisions are
studied. Energy evolution is discussed through the spatial trajec-
tories of rays. Here, only the propagation of a single spatial soliton
and the collision of two solitons are shown as examples; the same
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ray tracing and phase-space representation approach can be easily
applied to other complex nonlinear phenomena, especially those
subject to the third order nonlinear susceptibility, such as self-
focusing, laser beam breakup (filamentation), soliton breathers,
and dark solitons. Furthermore, ray representation mentioned in
this paper may also be applied to the study of temporal nonlinear
phenomena. For example, since spatial propagation of spatial
solitons is analogous to temporal evolution of temporal solitons
through a direct mapping between the space and time variables,
ray tracing results presented here may be extended to temporal
solitons by straightforward modifications. Note that among all the
possible scenarios, our iterative method gives a good approxima-
tion when the rays are paraxial and the refractive index distribu-
tion does not have rapid variation. Otherwise the transport model
of the WDF may fail [18]. In those cases, errors will build up
especially within regions of sharp index or intensity variations, e.g.
a focal point.

2. Spatial soliton description

To investigate the Hamiltonian properties of a spatial soliton,
we first show that given the known refractive index profile of the
nonlinear medium where the soliton propagates, Hamiltonian ray
trajectories yield a self-consistent result. More specifically, we
show that at any given plane transverse to the optical axis, all rays
have traveled the same optical path length (OPL); moreover, the
intensity distribution I(x) [and thus the index profile according to
the Kerr effect relation nðxÞ ¼ n0þn2IðxÞ] maintains the same
profile.

Hamiltonian equations describe a ray trajectory by its position x
and momentum px along x direction at any transverse plane z, for a
given index distribution nðx; zÞ, and can be written as [21]

dx
dz

¼ ∂h
∂px

¼ �px
h
;

dpx
dz

¼ �∂h
∂x

¼ �n
h
∂n
∂x

; ð1Þ

where h¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�p2x

p
is the screen Hamiltonian. Note that the

momentum is proportional to the direction of ray propagation by
px ¼ sin ϕ=λ, where ϕ is the angle of the propagation with respect
to z-axis, and λ is the wavelength. Based on the nonlinear
Schrödinger equation, there exists an analytical solution for the
optical field of a spatial soliton:

Aðx; zÞ ¼ A0 sechðx=w0Þ expðiθðzÞÞ; ð2Þ
where A0 is the peak amplitude, w0 is the beam width and θ is the
phase which is invariant along x direction [22]. In a Kerr nonlinear
medium, the refractive index changes proportional to the intensity
distribution; thus the index profile for the spatial soliton is

nðx; zÞ ¼ n0þn2A
2
0 sech

2ðx=w0Þ; ð3Þ
where n0 is the usual, weak-field refractive index, and n2 is the
Kerr effect coefficient. Given the index distribution, the ray
trajectories can be obtained by solving the pair of Hamiltonian
equations in Eq. (1). To obtain an input ray distribution consistent
to the field description in Eq. (2), we compute the WDF Wðx;pxÞ of
Aðx; z¼ 0Þ to define the initial rays for Eq. (1), according to the
definition [18,23]

Wðx; pxÞ ¼
Z

A xþx0

2

� �
An x�x0

2

� �
e� ipxx

0
dx0: ð4Þ

In the simulation shown in Fig. 1(a), we used n0 ¼ 1:5, n2 ¼
2� 10�13 ðm=VÞ2, A0 ¼ 281 V=m and w0 ¼ 0:55 mm. Note that
although each ray takes a distinct periodic trajectory, the rays
propagate around the central region of the soliton experience higher
refractive indices; the total OPLs [defined as the path integral of nðx; zÞ
along a ray trace] of all the rays at any transverse plane are the same.

This result suggests that the wavefronts are always perpendicular to
the optical axis which agrees with the definition of θ in Eq. (2).

Next we consider a dynamic process where the initial refractive
index is a constant n0, and show that given the initial rays
satisfying the fundamental soliton solution [in Eq. (2)] at the input
plane of a Kerr medium, the solution to the Hamiltonian equations
converges to the same index distribution as Eq. (3). We demon-
strate this result using our iterative nonlinear beam propagation
method. The method starts with a medium of constant weak-field
refractive index n0, and the definition of all the initial rays, i.e.
initial position and direction, based on the WDF of the input “sech”
profile. Each ray carries a generalized radiance, given by the value
of WDF at the given position and momentum. At each iteration, we
apply Hamiltonian ray tracing for each ray for the current index
distribution; at the end of each iteration, the intensity at each
point of space is calculated as the sum of the generalized radiances
carried by all the rays passing through the point, according to the
projection property of the WDF. Refractive index distribution is
then updated according to the Kerr effect, whose result is used in
the next iteration. As the iterations continue, all the rays converge
to form a soliton. Total simulation time is 3 min 7 s. The converged
ray trajectories are shown in Fig. 1(b), which match the result in
Fig. 1(a). Here the intensity profile [i.e. the refractive index profile
according to nðxÞ ¼ n0þn2IðxÞ] is the same as Fig. 1(a), thus we are
not showing it again. Note that this single soliton propagation
result has been presented in [14] as an example of the iterative
nonlinear beam propagation method. In this section we perform
detailed analyses on this result and verify it with analytical
expression of a spatial soliton in Eq. (2).

According to the ray tracing results, rays with different general-
ized radiances and initial condition oscillate at different periods.
Though most of the rays propagate in oscillatory fashion instead of
straight lines parallel to the optical axis, the generalized radiances of
all rays sum up to the correct intensity profile of a spatial soliton. The
WDFs calculated from the rays intercepting two different z planes are
shown in Fig. 2. As illustrated in the figure, both the WDF and the
intensity distribution remain invariant as the soliton propagates,
which matches the Hamiltonian ray tracing description and also the
analytical results. To further illustrate this point, here we also include
an animation showing the WDFs and sampled rays at different z
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Fig. 1. (a) Hamiltonian ray tracing results based on the known index profile of a
spatial soliton, and (b) iterative nonlinear beam propagation method results
starting from a medium of constant weak-field index. Solid lines are a subset of
all 10,100 rays used in the simulation. In (a), color shading denotes the distribution
of the normalized intensity profile, proportional to the nonlinear index change
n2IðxÞ. Dashed vertical lines indicate the wavefronts with respect to different OPLs.
In (b), colors of lines indicate the generalized radiances carried by these rays. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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