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a b s t r a c t

The solution of the diffraction problem of waves by an impedance half-plane that satisfies the

impedance boundary condition is obtained for the first time in the literature. A reflection coefficient

which is the function of the angular and spatial variables in the polar coordinates is defined and its

exact expression is obtained with the aid of the impedance boundary condition. The resultant

diffraction field is compared with the solution of Malyuzhinets numerically and their differences are

stressed. The structures of the total scattered, geometrical optics and diffracted waves are also

investigated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The diffraction process of waves by a lossy half-plane is an
important canonical problem, because it puts forward the effect of
the surface impedance on the diffracted waves. This problem has
application areas for the wave propagation in urban areas, terrains,
containing hills and forests, etc. [1–3]. It is also considered in the
interaction problems of electromagnetic waves with aircrafts
and ships whose outer surfaces are covered by lossy dielectrics
[4,5]. The impedance boundary condition is used to model
perfectly conducting surfaces, covered by a thin dielectric layer [6].
The scattering problem of waves by a lossy half-plane was first
investigated by Raman and Krishnan [7]. They multiplied the
reflected diffracted field with a constant reflection coefficient.
However their field expressions were far from satisfying for the
impedance boundary condition. The solution of the problem was
put forward by Senior in 1952 with the method of Wiener–Hopf
factorization [8]. Eight years later, Malyuzhinets solved the impe-
dance wedge problem, which can also be reduced to the half-
plane, by using the plane wave spectrum integral [9]. These two
solutions have been known as the exact solutions since 2009
[10–12]. In this year, we showed that the solutions of Malyuzhi-
nets and Senior were not satisfying the impedance boundary
condition [13,14]. Furthermore, the diffracted field expression of
Senior was not compensating for the discontinuities of the
geometrical optics (GO) waves at the transition regions [15,16].
Thus there is no exact solution of the diffraction problem of waves
by an impedance half-plane in the literature.

This paper aims to fill this gap and provide a solution of the
diffraction problem by an impedance half-plane that satisfies the
impedance boundary condition. With this aim, we will take into
account the diffracted waves by a perfectly conducting half-plane.
The reflected diffracted wave will be multiplied by a reflection
coefficient, which is the function of the polar coordinates (r,f) in
the two dimensional problem. The reason of this approach relies
on the fact that the amplitude of the diffracted field is dependent
on the GO wave’s amplitude [17]. The unknown coefficients of the
reflection coefficient will be determined by using the impedance
boundary condition and the limiting values of the GO field’s
reflection coefficients for sin y-N (soft surface) and sin y-0
(hard surface). sin y is equal to Z0/Z where Z0 and Z are the
impedances of the free space and half-plane respectively. The
total field (normal derivative of the total field) is equal to zero on
a soft (hard) surface. The resultant diffracted field expressions
will be compared with the solution of Malyuzhinets numerically.

A time factor of exp(jot) is suppressed throughout the paper.
j is

ffiffiffiffiffiffiffi
�1
p

. o is the angular frequency and t shows time.

2. Definition of the problem

A half-plane, located at y¼0 and x40, is taken into account. The
geometry is given in Fig. 1. A scalar plane wave of
u0 exp½jkrcosðf�f0Þ� is illuminating the half-screen. u0 is the
complex amplitude and f0 the angle of incidence. k is the wave-
number. The half-screen has equal face impedances, shown by Z, on
the upper and lower surfaces at f¼0 and f¼2p respectively.

The impedance boundary condition can be written as

u9S ¼ 8
1

jkrsin y
@u

@f

����
S

ð1Þ
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on the surface of the half-plane [9]. u represents the total field.
The þ and � signs are valid for f¼0 and f¼2p. S is the surface
of the half-plane. The aim of the problem is the determination of
the scattered fields by the half-plane, which can be written as

u¼ uisþurs ð2Þ

for which uis and urs are the incident and reflected scattered
waves respectively. A scattered field is composed of the GO and
diffracted waves. The GO wave propagates unaffected from the
discontinuity of the scatterer and has the same structure with the
incident field. The reflected and transmitted GO waves can be
evaluated by using the laws of GO. However they are not
continuous and do not spread all over the space, because of the
discontinuity of the scatterer’s surface. The diffracted field is
radiated by the edge discontinuity of the scatterer and has a shift
of 1801 on the transition region, which shows the location where
the GO wave suddenly goes to zero. This phase shift of the
diffracted wave compensates the discontinuity of the GO field at
the transition region and its sum, which is the scattered wave, is
continuous everywhere in space. This physical explanation of the
GO and diffracted fields is based on the quantitative ideas of
Young [18] and Rubinowicz [19]. The GO fields are known for this
problem and can be expressed as

uGO ¼ uiGOþurGO ð3Þ

where the incident and reflected GO fields of uiGO and urGO can be
defined by

uiGO ¼ u0e�Uð�x�Þ ð4Þ

and

urGO ¼ Ru0eþUð�xþ Þ ð5Þ

respectively. uiGO has the same structure as the incident field, but
it is discontinuous at the shadow boundary. It can be seen from
Fig. 1 that the incident wave that hits the semi-infinite aperture,
at xo0, directly passes to the plane of yo0 till the edge point of
x¼0. After that point the incident wave cannot pass to the yo0
plane. This sharp transition creates a discontinuity in the incident
GO wave and the location of the discontinuity is determined with
the shadow boundary at f¼pþf0. In a similar way, the incident
rays that hit the impedance screen, at x40, will reflect by an
amplitude change determined with the coefficient R. This reflec-
tion forms the reflected GO wave urGO. Since, the half-plane is
limited by the edge point at x¼0, the reflected GO waves exist in
the region, bounded by the reflection boundary, which is located
at f¼p�f0. x7 has the expression of �

ffiffiffiffiffiffiffiffiffi
2kr

p
cos½ðf7f0Þ=2�

[20]. e7 is exp[jkrcos(f7f0)]. R is the reflection coefficient that

can be represented by the equation

R¼
sinf0�siny
sinf0þsiny

: ð6Þ

U(x) is the unit step function, which is equal to one for x40
and zero otherwise. It determines the locations of the reflection
and shadow boundaries where the reflected and incident GO
waves have discontinuity. First of all we will show the defect of
the solutions of Senior and Malyuzhinets. Their diffracted field
expressions can be written as

ud ¼ sðfÞ
expð�jkrÞffiffiffiffiffiffi

kr
p ð7Þ

where s is only a function of f. The relation of

s0ð0Þ ¼ jkrsinysð0Þ ð8Þ

can be obtained when Eq. (7) is used in Eq. (1). A similar relation
can be obtained for f¼2p. The symbol 0 represents the differ-
entiation according to f. Eq. (8) can only be satisfied if s is also a
function of r besides f. As a result, the solutions of Senior and
Malyuzhinets do not satisfy the impedance boundary condition,
given by Eq. (1). Thus they are not the rigorous solutions of the
impedance half-plane problem.

In this study, we will accept the total diffracted field as

ud ¼�
expð�jp=4Þ

2
ffiffiffiffiffiffi
2p
p

1

cos f�fð Þ0=2
� � þ Gðr,fÞ

cos fþfð Þ0=2
� �

" #
expð�jkrÞffiffiffiffiffiffi

kr
p

ð9Þ

in order to obtain a solution that satisfies Eq. (1). G is the reflection
coefficient of the reflected diffracted field and its r dependence
will not be shown further. As mentioned above, the diffracted field
is radiated by the edge discontinuity located at r¼0 and
zA(�N,N). It is equivalent to the field, excited by a line source,
located at the same coordinates. For this reason, the r dependence
of the diffracted field is given by a cylindrical wave, originating
from r¼0 and zA(�N,N). The amplitude of this wave alters with
respect to f and is dependent on the angle of incidence f0. The
diffracted wave changes its sign (has a phase shift of 1801) at the
reflection and shadow boundaries, located at f¼p�f0 and
f¼pþf0 respectively. Thus it compensates for the discontinuities
of the GO waves at these transition regions. Note that the diffracted
field expression, in Eq. (14), approaches infinity at the transition
zones. The uniform expressions, which are finite in these regions,
will be obtained later on. The sum of ud and uGO gives the total
scattered field u. G can be determined by some relations with the
reflection coefficient R, which approaches �1 and 1 for sin y-N

and sin y-0 respectively. The same conditions must also be
satisfied by G. Furthermore the condition of

Gðp�f0Þ ¼ R ð10Þ

must also be satisfied on the reflection boundary, since the
reflected diffracted field compensates for the discontinuity of the
reflected GO wave here. G is a function of f, because it must satisfy
the impedance boundary condition at two f-dependent coordi-
nates at f¼0 and f¼2p. The general structure of R can be used to
construct G. As shown in [20,21], the term of sin f0 can be
represented by cos[(f�f0)/2] for the reflected diffracted wave,
because the cosine term becomes equal to sin f0 at the transition
region, at f¼p�f0. Thus we can write the equation of

GðfÞ ¼
cos f�f0

� �
=2

� �
�siny

cos f�f0

� �
=2

� �
þsiny

ð11Þ

for G. Note that Eq. (11) satisfies Eq. (10) and is equal to 1 and �1
at the limits of sin y-0 and sin y-N respectively. However it
does not satisfy the boundary conditions, given by Eq. (1), because
G must include two different coefficients which will be determined
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Fig. 1. Geometry of the diffraction of waves by a half-plane with equal face

impedances.
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