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a b s t r a c t

The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding

systems including infrared imaging and microscopy. In this paper, the stationary phase method is

employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF)

under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation

corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation,

we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based

on stationary phase approximation is presented which helps to determine the initial parameter of

phase mask, significantly decreasing the computational time required for numerical simulation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wavefront coding technology has been extensively studied
since Dowski and Cathey introduced the wavefront coding con-
cept in 1995 [1,2]. However, most of the reported studies focus on
one-dimensional conditions [3–7]. For two-dimensional analyses,
researchers usually use original cubic phase mask (CPM) because
it can be easily decomposed into a one-dimensional problem
[8–12]. There are some other studies that report numerical [13]
and experimental [14] analysis of the two-dimensional conditions
encountered in non-CPM wavefront coding. So far, no analysis has
been conducted for non-CPM two-dimensional wavefront coding.

A novel phase mask, generalized cubic phase mask (GCPM),
based on the Zernike polynomial has been proposed in 2003 [8]
and applied in infrared imaging [15,16] and optical microscopy
[17,18]. For a GCPM system, its point spread function is free of
lateral shifts and its modulation transfer function (MTF) exhibits
superior off-axis performance. However, a GCPM cannot be
decomposed into a one-dimensional problem, and has been
analyzed numerically only so far [19].

Though the MTF of GCPM can be analyzed by Fast Fourier
Transform (FFT) analysis, the analytical approximation is still vital
in understanding the rules of MTF changing. As in the case of
CPM, the approximation of CPM MTF in one dimension is firstly
given in the paper of Dowski and Cathey.

In this paper, a stationary phase method is used to obtain an
approximation of MTF of GCPM wavefront coding system under

misfocus aberration. The approximation provides insights into the
imaging characteristics of wavefront coding with GCPMs. The
boundary of GCPM MTF is analyzed using the approximation, and
then the MTF characteristics of GCPM and CPM are compared.
A design approach based on the approximation is also presented.

2. Theory

The mathematical function of the GCPM is

fðx,yÞ ¼ b x3þy3
� �

�3b x2yþxy2
� �

ð1Þ

where b determines the strength of the phase mask. For simpli-
city, a variable substitution for a circular aperture is made to
rotate the phase mask 451 clockwise around its center. The GCPM
mathematical function is then rewritten as

fðx,yÞ ¼ g 3x2y�y3
� �

ð2Þ

where g satisfies

g¼
ffiffiffi
2
p

b ð3Þ

Fig. 1 shows the phase map of Eq. (2) in circular aperture. It is
very similar to the GCPM phase maps in [15,16]. The only
difference between them is the placement direction. The optical
transfer function (OTF) as a function of misfocus is given as

Hðu,v,cÞ ¼
1

S

Z Z
Pðxþu,yþvÞ exp ic xþuð Þ

2
þ yþvð Þ

2
h in o

�Pðx�u,y�vÞ exp ic x�uð Þ
2
þ y�vð Þ

2
h in o

dx dy ð4Þ

where u and v are the normalized spatial frequency (NSF), and P

denotes the phase function expressed as in Eq. (5). S is the
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aperture area. which is p for a unit circular aperture.

Pðx,yÞ ¼ pðx,yÞ expðifðx,yÞÞ ð5Þ

where p is the aperture function. For a unit circular aperture, p is
expressed as follows:

pðx,yÞ ¼
1 x2þy2r1

0 else

(
ð6Þ

c in Eq. (4) is the misfocus parameter expressed as follows:

c¼
pL2

4l
1

f
�

1

d0
�

1

di

� �
ð7Þ

where L is the width of the aperture, f is the focal length, d0

denotes the object distance from the first principal plane of the
lens, di represents the distance of the image-capture plane from
the second principal plane of the lens, and l is the wavelength of
light.

Using the stationary phase approach described in [20], we
obtained the stationary phase approximation (SPA) of the GCMP
MTF as follows. Where the details of this approximation are
provided in Appendix A:

9H u,v,cð Þ9�
1

6g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2
p p �

2cuv

3g u2þv2
� � þu,�

c
3g

u2�v2

u2þv2

� �
þv

 !

�p �
2cuv

3g u2þv2
� ��u,�

c
3g

u2�v2

u2þv2

� �
�v

 !
ð8Þ

As indicated in Eq. (8), c affects only the non-zero area, and not
the shape of the approximation.Setting c¼0, we obtain

9Hðu,v,0Þ9�
1

6g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2
p pðu,vÞpð�u,�vÞ ð9Þ

As shown in Eq. (9), MTF is non-zero in a circular area centered on
(0,0), with a radius of 1. MTF equals 0 outside the circular area. If
ca0, the borderline equation of the non-zero MTF area is

p �
2cuv

3gðu2þv2Þ
þu,�

c
3g

u2�v2

u2þv2

� �
þv

� �
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�u,�

c
3g

u2�v2

u2þv2

� �
�v

� �
¼ 1 ð10Þ

It is noted that Eq. (10), the borderline equation, is difficult to be
resolved directly; we first made a numerical resolution and
obtained Fig. 2, which shows that the non-zero MTF area is
a hexagon with six symmetry axes. The intersections of the

non-zero area border and the symmetrical axes generally define
the non-zero area.

Ri and Ro are the inner and outer radius, respectively, of the
non-zero hexagon (Fig. 3). Under the condition u¼0 and v¼0,
solving Eq. (10) yields Ri and Ro respectively.

If u¼0, the non-zero MTF borderline equation is written as

pð0,c=3gþvÞpð0,c=3g�vÞ ¼ 1 ð11Þ

Fig. 1. Phase wrapped from �p to p for GCPM design computed within a circular

pupil aperture (g¼100, aperture radius¼1).
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Fig. 2. Non-zero area boarder of SPA of GCPM MTF; g¼20, aperture radius¼1,

c¼0, 6, 12, y, 60 (from outer circle to inner hexagon), with six axes of symmetry

(dashed line).
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Fig. 3. Non-zero area of GCPM MPA of MTF (gray color); g¼20, aperture radius¼1,

c¼40, with internal radius Ri and external radius Ro.
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