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a b s t r a c t

Mutual space–frequency distribution is proposed and both the Wigner and Weyl distribution functions

are shown to be some particular cases of this distribution. The simple connection is established

between the Wigner and Weyl distributions. Mutual distribution of Gaussian signal is analytically

obtained. It is shown that the Wigner distribution is formed as the rotational displacement of the Weyl

distribution on informational diagram of conjugate coordinates ðx;pÞ on an angle proportional to the

mutual parameter t. The results are presented of direct calculations of mutual distribution for Gaussian

signal in the mutual domain.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main aim of space–frequency analysis is elaboration of
distributions in order to get the information about signal simul-
taneously in coordinate and frequency domains. As a rule the
Fourier transform is used to receive the signal frequency spec-
trum. This well-known transformation is a good tool for the
analysis of signal intensity distribution in the frequency domain.
Such analysis foresees the calculation of Fourier-spectrum for
constant coordinates. Practically, we have to deal with a certain
momentary value of coordinates for which the signal and their
Fourier-image are simultaneously determined. With the coordi-
nate variation the appropriate conversion of Fourier-spectrum
also takes place and at once the problem of signal analysis occurs;
the latter contains frequency components that are variables in
accordance with coordinates. In such a case it is important to
know the value of coordinate at which the corresponding trans-
formation of frequency spectrum takes place. In order to inves-
tigate the variation of signal spectrum with the variation of its
coordinate, as far back as in 1960–1980s a new approach was
propounded. It unites the information about coordinate and
frequency constituents of the signal in the so-called space–
frequency representations. In such representations a certain
mutual function of coordinate and frequency is considered. The
idea of constructing mutual representations originates in works of
Wigner [1], Gabor [2] and Weyl [3]. Before the 1980s of the
previous century tens of space–frequency representations of this

kind were taken under consideration [4–6]. However, the Wigner
and Weyl distributions, which are most used for the present day,
remained the prerogative of quantum mechanics and they have
not had precisely expressed use. Clasen and Mecklenbrauker
worked out the theory of application of Wigner distribution for
the space–frequency analysis of signals. Its main results were
published in the series of works under the title ‘‘Wigner distribu-
tion – the instrument for space–frequency analysis of signals’’
[7–9]. The successful use of the Wigner distribution in the theory
of signals was due to its ‘‘good’’ mathematical characteristics,
especially by its representative characteristics that are basic in
the renewal of signal intensity distribution.

Within the framework of the given investigation, of a variety of
space–frequency representations we single out two basic distri-
butions by Wigner and Weyl, which are widely used in the theory
of signals for solving diverse physical problems [5,10]. The
investigation of the signal characteristics is carried out on the
basis of comparison with its displaced analogues.

For present day, various types of space–frequency distribu-
tions are successfully used for the analysis of nonstationary
signals [4,5]. Many of such distributions are characterized by
advantages as well as by disadvantages in use in various fields of
physics. The Wigner and Weyl distributions are widely used in
space–frequency analysis and, in particular, in optical information
processing systems. It is well-known that the distributions
possess such characteristics that are successfully used for descrip-
tion of many optical systems. The spectrum of applications of
these distributions is extremely wide. They are used, in particular,
in the theory of optical lens systems, theory of communication,
hydrolocation and other fields [6,10,11]. The research of last years

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/optcom

Optics Communications

0030-4018/$ - see front matter & 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.optcom.2012.12.079

E-mail address: yuralibs@i.ua

Optics Communications 295 (2013) 63–73

www.elsevier.com/locate/optcom
www.elsevier.com/locate/optcom
http://dx.doi.org/10.1016/j.optcom.2012.12.079
http://dx.doi.org/10.1016/j.optcom.2012.12.079
http://dx.doi.org/10.1016/j.optcom.2012.12.079
mailto:yuralibs@i.ua
http://dx.doi.org/10.1016/j.optcom.2012.12.079


proved the efficiency of use of space–frequency distributions in
biology and medicine; especially the Wigner distribution was
successfully used for renewal of volumetric structure of objects
within the framework of optical tomography [12–14]. One of the
promising investigation directions within the space–frequency
processing of signals is study of the properties of novel space–
frequency distributions, with the aim of their further applications
in different areas of physics and medicine. Unfortunately, some
space–frequency distributions often do not meet demands raised
by one or another specific application. In this relation, many of
the existing distributions need generalization or improvements
when applied to a given problem. During the second half of the
past century and the beginning of this one, a clear tendency has
been observed towards generalization of different space–fre-
quency distributions. The first attempt of such a generalization
was due to Cohen [15] as long ago as in 1966. The author
introduced a number of quasiprobability distributions that pro-
vided proper quantum mechanical marginal distributions. Within
the limits of this research, the Wigner distribution was examined
as a special case. The next step was done by De Bruijn in 1973
[16]. His work was devoted to elaboration of the theory of
generalized functions, with application concerned Wigner and
Weyl distributions. Summarizing the results of numerous inves-
tigations, Cohen [4,6] suggested a generalized distribution invol-
ving a certain kernel:
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Depending on the form of the kernel Fðx,oÞ, this distribution
degenerates into one of the known distributions (Wigner, Weyl,
Woodward, Kirkwood, Page, Mark, etc.).

In general, expression (1) describes a class of space–frequency
distributions later named Cohen’s class. This class contains known
distributions as well as a set of still unknown distributions, which
also satisfy all necessary requirements of existing distributions.
The theory of generalization of space–frequency distributions was
developed by Mertins, who also is a famous specialist in the
theory of signals. In his monograph ‘‘Signal Analysis’’ [10] he
singled out this topic into a separate section ‘‘General space–
frequency distributions’’. The author stated that the Wigner
distribution serves as an excellent tool for space–frequency
analysis as long as a linear dependence is kept between the
instantaneous coordinates and frequencies. Otherwise, a need in
generalization appears, general principles of which are described
in detail in the mentioned work.

Among numerous recent studies related to generalizing space–
frequency distributions, we should mention only the most typical
ones. The Ph.D. thesis by Durak ‘‘Novel time-frequency analysis
technique for deterministic signals’’ [17] is one of such studies,
where a close attention was paid to generalized distributions and
their additional parameters were introduced.

In the present work we try to use relationships between the
Wigner and Weyl distributions with the aim of ‘‘mixing’’ them
into a single, more general distribution. Up to date, it has been
revealed that the two distributions are related by a double Fourier
transform. The results obtained by us allow tracing transforma-
tion of one of the distributions into the other, while changing the
distribution parameter t. This generalized distribution generates a
whole set of new distributions formed in the process of switching
between the basic distributions. The latter fact may be important
from the viewpoint of possible practical applications. For the
present day a choice between the Weyl and Wigner distributions
remains ambiguous. Each of them has its own scheme for
reconstruction of signal intensity distribution. The scheme
adopted for the Wigner distribution includes calculating the

marginal distributions [4]. The Weyl distribution provides much
simpler reconstruction scheme, owing to simpler mathematical
transformations [18,19]. Traditionally, the Wigner distribution
has been used in a large majority of studies performed within
the field. Introduction of the mutual distribution would mean a
possibility for calculating ‘mixed’ states and determining the
necessary contributions of each of the limiting distributions. As
stated above, there appears a possibility for generalization of
distributions concerning various applied problems. However, only
Chountasis suggested an approach [20] that enables transitions
between the Wigner and Weyl distributions. Such distributions
play an important role in the analysis of phase space and,
moreover, can be immediately applied in the Wigner tomography
[12,14]. Chountasis and co-authors [20–22] developed a general
distribution based on the Wigner formalism, which involves an
additional parameter y. This study was performed in frame of
quantum-mechanical formalism.

The problem of calculation of a classical analogue of this
generalized distribution remains urgent. It may be constructed
based on the results [20] or using the formalism of Weyl
distribution, as was done by the present author when studying
the properties of fractional Fourier transform [23]. Similar to the
works [18,19], the author has employed peculiarities of recon-
struction of signal intensity based upon the Weyl distribution.
Meanwhile, only this reconstruction scheme is realized experi-
mentally in the real optical schemes [23].

2. Transformations between space–frequency distributions

For today, there are many different types of space–frequency
(space–time) distributions that are both well known and widely
exploited. Most spread of them are the Wigner and the Weyl
distributions.

Consider two signals described by functions f 1ðxÞ and f 2ðxÞ,
which, in turn, are assumed to posses Fourier transforms F1ðoÞ
and F2ðoÞ, respectively. The Wigner distribution of such signals
has the form
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where f n2ðyÞ is the complex conjugate of f ðyÞ. The expression
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is referred to as the autocorrelation function and can also be
regarded as a kind of distribution. The Weyl distribution is
written as
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The quantities x and o, on which the Wigner distribution is
dependent, are average values of space coordinate and frequency,
respectively. Another pair of variables, x0 and o0, describes
deviations from the average values. The authors of work [24]
consider these two pairs of variables as conceptually different.
Variables x and o are called ‘‘slow’’, while x0 and o0 are called
‘‘rapid deviations’’.

By definition, the Fourier transform for f(x) is

FðoÞ ¼
Z þ1
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1
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Therefore, we can introduce corresponding autocorrelation func-
tion:
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