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We study defect modes in optically induced one-dimensional lattices in photovoltaic-photorefractive crys-
tals. These defect modes exist in different bandgaps due to the change of defect intensity. For a positive de-
fect, defect mode branches exist not only in the semi-infinite bandgap, but also in the first and second
bandgaps. When the defect mode branch is fixed, the confinement of defect modes increases with the defect
strength parameter. For a negative defect, defect mode branches exist only in the first and second bandgaps.
For a given defect mode branch, the strongest confinement of the defect modes appears when the lattice in-
tensity at the defect site is not the smallest in its branch. On the other hand, when the defect strength param-
eter is fixed, the most localized defect modes arise in the semi-infinite bandgap for the positive defect and in
the first bandgap for the negative defect.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

Optical wave propagation in periodic photonic structures has
attracted a strong interest because of its fundamental physics and
light-routing applications [1,2]. To date, diverse types of self-localized
beams in optically induced lattices have been predicted theoretically
and observed experimentally in photorefractive crystals, including
fundamental [3], multipole [4,5], vortex [6–8], and necklace-like [9]
solitons as well as gap soliton trains [10]. It is well known that in a
periodic optical medium, linear light propagation exhibits Bloch
bands and forbidden bandgaps. If a periodic lattice has a local defect,
this defect can support linear localized modes (called defect modes)
inside bandgaps of the periodic optical medium. In experiment,
reconfigurable optically induced photonic lattices in photorefractive
crystals with and without defects were successfully generated
[11–13]. This provides an advantage for us to research defect modes
in photonic lattices. Thus far, linear defectmodes [14–17] and nonlinear
defect solitons [18,19] in one-dimensional and two-dimensional pho-
tonic lattices have been predicted in biased photorefractive crystals.
However, linear defect modes in photonic lattices induced optically in
photovoltaic-photorefractive crystals have not yet been explored.

In this article, we analyze defect modes in optically induced one-
dimensional lattices in photovoltaic-photorefractive crystals. These
defect modes reside in various bandgaps of the photonic lattice. For
a positive defect, we find that defect mode branches exist not only in
the semi-infinite bandgap, but also in the first and second bandgaps.
These defect mode branches occur at the Bloch state on the left edge

of each Bloch band and stay inside their respective bandgaps. The con-
finement of defect modes increases with the defect strength parameter
in their branch. For a negative defect, we find also that defect mode
branches exist only in the first and second bandgaps. These branches
occurring at the Bloch state on the right edge of each Bloch band
march to edges of higher Bloch bands and then reappear in higher
bandgaps. For a given defect mode branch, the strongest confinement
of the defect modes appears when the lattice intensity at the defect
site is not the smallest in its branch. We show that when the defect
strength parameter is fixed, the most localized defect modes arise in
the semi-infinite bandgap for the positive defects and in the first band-
gap for the negative defect.

To start, let us consider an ordinarily polarized lattice beam with a
single-site defect that propagates in a photovoltaic-photorefractive
crystal along the z axis and is allowed to diffract only along the x direc-
tion. For illustration purposes, let the photovoltaic-photorefractive crys-
tal be LiNbO3 with its optical c axis oriented along the x direction.
Moreover, let us assume that an extraordinarily polarized probe beam
with a very low intensity is launched into the defect site, propagating
collinearly with the lattice beam. In that case, the nondimensionalized
model equation for the probe beam is [14,20]

i
∂U
∂Z þ ∂2U

∂X2 þ E0IL Xð Þ
1þ IL Xð ÞU ¼ 0; ð1Þ

whereU is the slowly varying amplitude of the probe beam, E0=Ep/(π2/
T2k2ne

2r33), Ep is the photovoltaic field constant, T is the lattice spacing, k
is the optical wave number in the photovoltaic-photorefractive crystal,
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k=2πne/λ, λ is the wavelength, ne is the unperturbed extraordinary
index of refraction, r33 is the electro-optic coefficient,

IL ¼ I0 cos
2 Xð Þ 1þ εf D Xð Þ½ �; ð2Þ

is the intensity function of the photorefractive lattice, I0 is the peak in-
tensity of the otherwise uniformphotonic lattice, ε controls the strength
of the defect, and fD(X) is a localized function describing the shape of the
defect. In obtaining Eq. (1), we have used normalized coordinates, i.e.,
Z=z/(2kT2/π2) and X=x/(T/π). In this study, let us assume that the de-
fect is restricted to a single lattice site at X=0. Thus, we take the defect
function fD(X) as

f D Xð Þ ¼ exp −X8
=128

� �
: ð3Þ

Other choices of single-site defect functions fD(X) give similar re-
sults. For a positive defect (ε>0), the lattice light intensity IL at the
defect site is higher than that at the surrounding sites. For a nega-
tive defect (εb0), the lattice intensity IL at the defect site is lower
than that at the surrounding sites. The intensity distributions of optical
lattices with ε=0.5 and −0.8 are displayed in Figs. 4(e) and 7(m), re-
spectively. In this paper, the LiNbO3 parameters at a wavelength
λ=0.5 μm are taken to be ne=2.2, r33=30×10−12m/V, and
Ep=40kV/cm. Moreover, we choose I0=3 and T=20 μm, which are
typical experimental conditions [14]. For this set of values, E0≈18,
oneX unit corresponds to 6.4 μm, and one Zunit corresponds to 2.2 mm.

In order to obtain the defect modes in the bandgaps, let us first
look at the dispersion relation and bandgap structure of Eq. (1) with
ε=0. According to the Bloch theorem, eigenfunctions of Eq. (1) can
be sought in the form of

U X; kXð Þ ¼ u Xð Þ exp ikXX−iβZð Þ; ð4Þ

where β is the Bloch-wave propagation constant, kX is wave number
in the first Brillouin zone bounded between −1≤kX≤1, u(X) is a pe-
riodic function with the same periodicity as the lattices. Substitution
of the form of U(X, kX) into Eq. (1) with ε=0 leads to the following
eigenvalue equation

∂2u
∂X2 þ 2ikX

∂u
∂X−k2Xuþ V Xð Þu ¼ −βu; ð5Þ

with the uniform periodic potential

V Xð Þ ¼ E0I0 cos
2 Xð Þ

1þ I0 cos
2 Xð Þ : ð6Þ

We calculate Eq. (5) using numerical techniques to obtain the dis-
persion relation as shown in Fig. 1. It can be seen that there exist
three complete gaps which are named the semi-infinite, first, and

second gaps respectively. These bandgaps correspond to the white
areas in Fig. 1 from the bottom to the top, separated by the shaded
Bloch bands.

The defect modes in Eq. (1) are sought in the form U(X, Z)=u(X)
exp(− iβZ), where u(X) is a real function and satisfies the linear
eigenvalue equation

∂2u
∂X2 þ

∂2u
∂Y2 þ

E0IL
1þ IL

u ¼ −βu; ð7Þ

from which linear defect modes can be determined by expanding
the solution u(X) into discrete Fourier series and then converting
Eq. (7) into a matrix eigenvalue problem with β as the eigenvalue
[14].

Let usfirst consider defectmodes in Eq. (7)when the defect strength
parameter ε varies from−1 to 1.We have obtained the defectmodes at
each ε value, and the entire diagram of defect eigenvalues versus ε is
shown in Fig. 2. For a positive defect (ε>0), a defect mode bifurcates
from the left edge of each Bloch band into the bandgap. For a negative
defect (εb0), a defect mode bifurcates from the right edge of each
Bloch band into the bandgap. Notice that there are no defect modes in
the semi-infinite bandgap when εb0. Recall that the left and right
edges of Bloch bands in Fig. 2 correspond to the lower and upper
edges of Bloch bands in Fig. 1, thus Bloch states at circled locations in
Fig. 1 and defect modes at the circled points a, b, c, d of Fig. 2 are one
and the same. Fig. 3 shows the first four Bloch states at the circled points
a, b, c, d of Fig. 1. Of these four states, the first two are symmetric, and
the last two antisymmetric, in X. On the other hand, when |ε| is
increased, defect mode branches move away from band edges. When
ε>0, these branches stay inside their respective bandgaps. When εb0,
defect mode branches march to edges of higher Bloch bands and then
reappear in higher bandgaps. For example, the defect mode branch in
the first bandgap reaches the edge of the second Bloch band at
ε≈−0.65 and reappears in the second bandgap when ε≈−0.65.

Now we examine defect modes on defect mode branches in Fig. 2.
For this purpose, we select the representative points from defect
mode branches, mark them by circles, and label them by letters in
Fig. 2. Figs. 4–7 depict defect mode profiles at these marked points.
The letter labels for these defect modes are identical to those for the
marked points on defect mode branches in Fig. 2. First, we examine
defect modes on defect-mode branches in Fig. 2 when ε>0. When
the defect parameter ε is fixed, we look at the confinement of defect
modes in different bandgaps. The lattice-field profile for ε=0.5 can
be seen in Fig. 4(a). In this case, three defect modes are displayed in
Fig. 4. The first one in the semi-infinite bandgap is quite localized
and is symmetric in X [see Fig. 4(f)]. The second one in the first band-
gap is more confined than the third one in the second bandgap [see
Figs. 4(g) and 4(h)]. The defect mode in the first bandgap is antisym-
metric in X, while the defect mode in the second bandgap is symmet-
ric in X. When the bandgap is fixed, the defect parameter ε has

Fig. 1. Dispersion relation of Eq. (5) with E0=18 and I0=3. Shaded: first three Bloch
bands. Bloch states at circled locations are displayed in Fig. 3.

Fig. 2. Bifurcations of defect modes with the defect described by Eq. (2) at E0=18 and
I0=3. The shaded regions are the Bloch bands. Profiles of defect modes at the circled
points in this figure are displayed in Figs. 3–7.
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