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a b s t r a c t

We construct analytical localized wave solutions to the generalized nonautonomous nonlinear

Schrödinger equation with Gaussian shaped nonlinearity and trapping potentials by using a similarity

transformation technique. Our results show that analytical localized wave solutions possess n�1 zeros

where their existence requires some restrictive conditions corresponding to the dispersion coefficient,

the Gaussian shaped nonlinearity, the gain (loss) coefficient, and the trapping potential. In addition, the

stability analysis of the solutions is discussed numerically.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLSE) is one of the most
important nonlinear models that emerges in many physical
phenomena, including nonlinear optics [1], Bose–Einstein con-
densates (BECs) [2], plasma physics [3], hydrodynamics [4], and
some organic materials [5]. Various types of solutions to NLSE are
found of great interest due to their applications in physical
systems, such as bright (dark) solitons [6], periodic traveling
waves [7], and localized waves [8].

In recent years, the nonautonomous system, a system received
some form of external time-dependent or space-dependent force,
has attracted extensive attention due to its interesting features
and potential applications [9,10]. Solutions to such model are
often called nonautonomous waves or nonautonomous solitons.
One of the representative examples is the nonautonomous NLSE
(or the NLSE with varied coefficients). Several methods are
applied to solving this model to obtain numerical and analytical
solutions [11–13]. Among these methods, the similarity transfor-
mation technique, in which transformation parameters can be
determined by a set of differential equations, has been applied
successfully to the nonautonomous NLSE [8]. In addition, it helps
to produce selected solutions in analytical form, which may be
important for a variety of applications.

Our interest is focused on a generalized nonautonomous NLSE
with an external potential describing soliton management in

nonlinear optics [14]. This model in the one-dimensional case
can be given by the following dimensionless form for complex
function cðx,tÞ:

i
@c
@t
þ f ðx,tÞ

@2c
@x2
þgðx,tÞ9c92cþVðx,tÞcþ igðx,tÞc¼ 0: ð1Þ

Here x is the transverse variable, t is the longitudinal variable. The
functions f ðx,tÞ,gðx,tÞ,gðx,tÞ are, respectively, the dispersion coeffi-
cient, the nonlinearity, and the gain (loss) coefficient, and Vðx,tÞ is
the external potential function. The boundary condition requires
cðx-71Þ¼ 0. Usually, the dispersion coefficient f ðx,tÞ is related
to the linear refractive index n0 that is usually nonuniform
distributed in the longitudinal direction (propagation direction)
in nonlinear media. It is expected that, our model (1), will be
existed in the nonlinear media whose transverse direction is also
inhomogeneous, i.e., the linear refractive index n0 ¼ n0ðx,tÞ. In the
context of BECs, Eq. (1) describes the dynamics of matter-wave
solitons [15] whose management can be realized by adjusting the
related control parameters via the technique of Feshbach reso-
nance [16,17]. t and x, in this case, represent the time and spatial
coordinate, respectively.

Recently the generalized nonautonomous NLSE (1) has been
extensively investigated in the literature [18–21] and some useful
techniques have been explored. Specifically, Eq. (1) in the case of
g¼ 0 was treated in Ref. [18] by using the Painlevé analysis and
the symmetry reduction and a classes of exact solutions were
found. In Refs. [19,20] we have studied the generalized nonauto-
nomous (cubic-quintic) NLSE with time- and space-dependent
distributed coefficients and external potentials and given the
analytical bright multisoliton (solitary wave) solutions to it.
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Recently, a work in Ref. [21] also presented the integrability
conditions of Eq. (1) by employing the Lax pair and similarity
transformation methods.

In this paper, we consider that the nonlinearity coefficient in
Eq. (1) is Gaussian shaped distribution, which is important in the
case of BECs with controlled optical interactions [22] and may be
exist in the nonlinear media when its transverse and longitudinal
directions are nonuniform distribution. The trapping potential
induced by the Gaussian shaped nonlinearity is then presented by
using a similarity transformation technique. Thus, such trapping
potential may be designed in the nonlinear media whose trans-
verse and longitudinal directions are nonuniform distribution and
the nonlinearity coefficient is Gaussian shaped distribution.

We start the reduction of Eq. (1) in the next section, where a
trapping potential supported by the Gaussian shaped nonlinearity
is presented, following as close as possible the recent works [8]. In
Section 3, an infinite number of exact localized wave solutions
induced by the Gaussian shaped nonlinearity and the trapping
potential are obtained. We also discuss their physical applications
and predict their possibility existences in nonlinear systems. In
Section 4, stability analysis of the solutions is discussed numeri-
cally. We finish the work in Section 5, where we make the
conclusions.

2. Similarity reduction

We suppose the Gaussian shaped nonlinearity as gðx,tÞ ¼
ae�x

2=b2

, where xðx,tÞ ¼ aðtÞx with aðtÞ being an positive definite
function of time. Our goal is to reduce Eq. (1) to the stationary
NLSE

EF¼�FXXþG9F92F, ð2Þ

where FðXÞ is a real function to be determined, E is the eigenvalue
of the nonlinear equation, and G is a constant.

To connect solutions of Eq. (1) with those of Eq. (2) we can
assume the wave function as

cðx,tÞ ¼ rðx,tÞFðXðx,tÞÞeifðx,tÞ, ð3Þ

where Xðx,tÞ ¼
R x
�1

e�x
02=b2

dx0. The substitution of Eq. (3) into
Eq. (1) then leads a system of equations when requiring FðXÞ to
satisfy Eq. (2). Solving these equations, one finds the following
solutions:
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where a¼ aðtÞ is arbitrary function of time. Note that the integral
function of time in Eq. (4b) is chosen to be zero. Now the trapping
potential supported by the Gaussian shaped nonlinearity is given
by (for simplicity, we take a¼1, which corresponds to the case in
Section 3.1)

Vðx,tÞ ¼ lðtÞþh1ðx,tÞe2x2=b2

þh2ðx,tÞe�2x2=b2

, ð5Þ

with

lðtÞ ¼
Gb2

8a2
ðaatt�a2

t Þ�
E

G
,

h1ðx,tÞ ¼
1þx2=b2

Gb2
,

h2ðx,tÞ ¼
Gb2
½a2

t ð1þ2x2=b2
Þ�aatt �

8a2
:

This is a trapping potential in the form of a combination of time-
modulation in trigonometric form (l(t) in Eq. (5)) and Gaussian
terms varying in space and time (the latter two terms on the right
hand in Eq. (5)), as plotted in Fig. 1. When E¼ 0, its profile is
displayed in Fig. 1(a); when Ea0, its profile is displayed in
Fig. 1(b), which shows a breathing behavior in the vicinity of
x¼0. It is seen that the trapping potential is not arbitrary, but
related to gðx,tÞ, f ðx,tÞ and gðx,tÞ via the parameters aðtÞ, aðtÞ. Thus,
Eqs. (4) and (5) should be understood as integrability conditions
on Eq. (1) for exact solutions by the present method.

When Go0, corresponding to the attractive nonlinearity, an
exact solution to Eq. (2) is chosen as

FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�l2

Þ=G

q
cnðlX�X0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2
�EÞ=2l2

q
Þ, ð6Þ

where l and X0 are arbitrary constants, and cn and sn (below) are
the Jacobian elliptic functions. The restriction on FðXÞ requires
�l2rEol2.

When G40, corresponding to the repulsive nonlinearity, a
nontrivial exact solution to Eq. (2) is

FðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE�l2

Þ=G

q
snðlX�X0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=l2
�1

q
Þ, ð7Þ

where l2oEo2l2.
Next, to investigate analytical solutions we choose

aðtÞ ¼ 1þE cosðo0tÞ, ð8Þ

where EAð�1;1Þ, o0AR.

3. Analytical localized wave solutions

In this section, we investigate the dynamics of the analytical
localized nonlinear wave solutions (6)–(7) of the generalized
nonautonomous NLSE (1). We also discuss their physical applica-
tions and predict their possibility existences in nonlinear systems.
It is interesting that the localized wave solutions under the
Gaussian shaped nonlinearity present different features for the
choice of a [a is the trigonometric form mentioned in Eq. (8)]. We
mainly focus on the following two cases:

3.1. Case of a¼1

In this case, We have rðx,tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�1ex

2=b2
p

. To obtain localized
wave solution of Eq. (1), we can impose FðXð71ÞÞ ¼ 0 to satisfy
the boundary condition cð71Þ¼ 0. Obviously, the condition

Fig. 1. Plots of the trapping potential supported by the Gaussian shaped nonlinearity

with (a) E¼ 0 and (b) E¼ 0:5. Other parameters are o0 ¼ G¼ 1, E¼ 0,b¼ 8.
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