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In this paper, we propose a method for multi-frame blind deconvolution. Two sparse priors, i.e., the natural
image gradient prior and an [;-norm based prior are used to regularize the latent image and point spread
functions (PSFs) respectively. An alternating minimization approach is adopted to solve the resulted optimi-
zation problem. We use both gray scale blurred frames from a data set and some colored ones which are
captured by a digital camera to verify the robustness of our approach. Experimental results show that the
proposed method can accurately reconstruct PSFs with complex structures and the restored images are of
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1. Introduction

In applications such as remote sensing, the obtained images are
often blurred due to defocusing, atmospheric disturbance, relative
motion, etc. The process can be modeled by convolving a latent
image with a PSF plus some noise:

g=ho+n (1)

where g, 0 and n denote the vector forms of the blurred image, latent
image and additive noise respectively, h stands for the convolution
matrix of the PSF. In the frequency domain, Eq. (1) is converted into
the following equation:

G(u) = H(u)O(u) + N(u) )

where G(u), H(u), O(u) and N(u) are the discrete Fourier Transforms
of the blurred image, PSF, latent image and additive noise respectively.

Image deconvolution aims to estimate the latent image from the
blurred. It can be divided into two categories in terms of whether the
PSF is known, i.e., non-blind and blind deconvolution. There are nu-
merous approaches for both of them, such as the non-blind deconvo-
lution methods proposed in Refs. [1-4] and the blind deconvolution
methods in Refs. [5-8].

However, even for non-blind deconvolution, the problem is ill-posed.
This is partly because in frequency domain, the energy of N(u) concen-
trates in the high frequency region while H(u) is low pass. The power
of N(u) will be amplified and results in unwanted artifacts such as
noise and ringing. Furthermore, in most cases, it is impractical to obtain
an accurate PSF and the negative artifacts will be more serious.
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In blind image deconvolution, since we have to estimate both the
latent image and PSF, the condition is even worse. There are so many
pairs of h and o fitting Eq. (1) that it is difficult to determine a good
solution. Obviously, the results of blind deconvolution also suffer
from negative artifacts as in non-blind deconvolution.

To make the solution stable, researchers have designed various
regularization methods, e.g., in Tikhonov regularization [9], the
regularization term Q(0) = Zj||fjo||§ (where each f; denotes the
convolution matrix of a certain derivative filter, j is the filter
index) is proposed. The advantage of Tikhonov regularization is
its computational convenience, but the restored image tends to
be smooth. Another famous regularization method is the total var-

iation (TV) Q(0) =2 (fm)ﬁ + (fzo)ﬁ (where f; and f, are the
convolution matrices of the derivative filters fy=[—1, 1] and
fo=[—1, 1]%, k denotes the pixel index) which have been successfully
used in both non-blind [10-12] and blind image deconvolution [13-15].
Although the TV is capable of preserving image edges during decon-
volution, it results in a nonlinear optimization problem. Fortunately,
efficient methods have been proposed to solve it and obtain satis-
factory results (e.g., the methods in Refs. [11,12]). In Ref. [16], the
authors analyze the conditions for edge-preserving regularization
and propose a series of regularization terms. Recently, many new
effective approaches emerge, e.g., the authors of Ref. [17] design
two regularization terms which derive from the bilateral and
joint bilateral filters. They are used to modify the Richardson-Lucy
(RL) algorithm and give birth to a successful progressive inter-scale
and intra-scale non-blind deconvolution method. In Ref. [ 18], the sparse
natural image gradient prior is introduced for regularization, with iter-
atively reweighted least squares (IRLS) method, it reaches very good re-
sult. In Ref. [19], the authors adopt a new prior based on the responses
of some edge detectors to regularize the latent image. The PSF is regu-
larized with TV. The result is achieved using an alternating
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minimization approach. In Ref. [20], a fast blind deconvolution method
is designed, whose efficiency comes from the usage of shock filter and
Gaussian prior. Furthermore, the GPU technique is also utilized to accel-
erate the computation. In Ref. [21], the authors improve the PSF estima-
tion process of the method proposed in Ref. [20]. Although it is
slower, the estimated PSF is of higher accuracy. The blurred image
is restored with a TV-Il; approach. In Ref. [22], a novel Bayesian
model is proposed, in which the PSF, local image differences and
the imaging model errors are all assumed to follow Student's-t distri-
bution, the resulted problem is solved with a variational Bayesian in-
ference method. Considering the topic of this paper, some of the
denoted single image blind deconvolution methods can be extended
straightforwardly for solving multi-frame blind deconvolution
problem.

In multi-frame blind deconvolution, different blurred versions
of the same target are provided. Although it suffers from the same
problems as in single image blind deconvolution, multiple frames
contain more information, with proper regularization and optimiza-
tion methods, we can expect better result. In early researches such as
Refs. [23,24], the authors mainly focus on noise priors and design
some inverse filters. In Ref. [25], the authors give an analysis on
some constrained algorithms and discuss in what cases using multi-
ple blurred frames is better than one. In recent years, due to the
successful applications of TV or Tikhonov regularization, some effec-
tive multi-frame blind deconvolution approaches are proposed, e.g.,
the author of Ref. [26] adopts a well designed iterative algorithm to
solve the TV based cost function. In Ref. [27], the efficiency of the
TV regularization method comes from the application of a splitting
technique. In Ref. [28], a method with Tikhonov regularization in
frequency domain is proposed, denoising and sharpening techniques
are also used to improve the restored images. There are also some
other methods which have been proven suitable for certain appli-
cations [29-31].

In recent studies, sparse priors become a focus of image processing
[18,32-34]. In this paper, we adopt the sparse natural image gradient
prior to regularize the latent image [18]. Moreover, due to the sparse
energy distribution of the PSF, we use another /;-norm based prior to
regularize it. Then we formulate the multi-frame blind deconvolu-
tion problem under Bayesian probabilistic framework. During opti-
mization, we use an alternating minimization approach to solve the
resulted problem. The latent image and PSFs are alternately opti-
mized until convergence. Experimental results on real world blurred
images show that the proposed method is insensitive to misalign-
ments between the blurred frames and can accurately reconstruct
PSFs with complex structures. The quality of the restored image is
comparable with that of some state of the art methods. Since most
modern digital cameras can work in continuous shooting mode, it
is easy to obtain multiple blurred frames of the same scene under
bad shooting environments (e.g., shooting in low-light environment,
the long exposure time will result in blurred images), in such cases,
our method will be a good choice for image restoration.

The arrangement of the paper is as follow. In Section 2, we make a
description of the adopted sparse priors and formulate the problem
under Bayesian framework. In Section 3, we demonstrate the optimi-
zation approach. In Section 4, we test our approach on both gray scale
and color blurred frames. Finally, we make a conclusion in Section 5.

2. Problem formulation

Suppose that we have obtained m blurred frames of the same ob-
ject o which are denoted by g; (i=1, 2,..., m). If the corresponding
PSFs are h; (i=1, 2,..., m), we obtain a series of equations:

g =ho+n 3)

where n; denotes the additive noise for the frame g;.

In Bayesian probabilistic framework, the solution of each equation
in Eq. (3) is the maximum a posteriori (MAP) estimation of the con-
ditional likelihoodP(0, h;|g;), i.e.,

(0.h;) = argmax,p,\P(0, hylg;) = arg max o p,\P(g;0, hy) = P(0) « P(h;) (4)

It is reasonable to assume that the solution of the multi-frame
blind deconvolution is

3
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With negative natural logarithmic operation, Eq. (5) is converted
into Eq. (6)

(07 hl ) h27 hm) m m
= argmingp, p, -0, | — Y 10gP(g;0,h;)—mlogP(0)— > " logP(h;)
i=1 i=1

. (6)

There are three terms —)_ ™, logP(g;|o,h;), —logP(o) and
—2_™, logP(h;) that need to be modeled in Eq. (6).
Suppose that P(g;|o,hy), P(g;|0.hy), ..., P(g,/0.h;) are Gaussian

and identically distributed, then
m m 2

~3" logP(gilo.hyee > [Injo—gi 3 ()
i1 i=1

where ||+||.denotes the l,-norm.

To model the term — logP(0), we use the natural image gradient
prior which assumes that the gradients of a natural image follow a
sparse probabilistic distribution. We take an example in Fig. 1 to dem-
onstrate it.

Fig. 1(a) shows a natural image. Fig. 1(b) is the probabilistic distri-
bution of its gradients along the horizontal direction. The authors of
Ref. [18] propose to model this distribution with a functiony = exp
(—c1|x|P —c,), where ¢;>0 is a scale factor, 0<p<1, ¢, is a constant
(¢ can be ignored because it does not impact the optimization). In
Fig. 1(c), the red curve denotes the natural logarithm of the proba-
bilistic distribution which is shown in Fig. 1(b), the blue curve de-
notes the natural logarithm of the function used to model it, i.e.,
log(y) = —0.6]x|%> —2.5.

If we assume that the distributions of the gradients along differ-
ent directions are identical, then the term — logP(0) can be modeled
by

—1ogP0)] = 3" [0 1P+ e, (8)
=

where f; is the convolution matrix of a derivative filter such as
fi=[—1, 1], n is the total number of filters used and N denotes the
total number of pixels in o. The definition for ||+, is the same
as l,-norm, ie., x, = (3 P)""? (where x; denotes the k-th ele-
ment of x), but we should pay attention that, since 0<p<1, it
is a quasi-norm, we use the sign [|||, here only for simplicity.
The most obvious feature of the PSF is its sparse energy distribu-
tion, e.g., in the matrix of a motion caused PSF, most of the elements
are zero. From the theory of sparse representation [35], we know



Download English Version:

https://daneshyari.com/en/article/1536550

Download Persian Version:

https://daneshyari.com/article/1536550

Daneshyari.com


https://daneshyari.com/en/article/1536550
https://daneshyari.com/article/1536550
https://daneshyari.com/

