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The main feature of Bessel beams realized in practice is their ability to resist diffractive effects over distances
exceeding the usual diffraction length. The theory and experimental demonstration of such waves can be
traced back to the seminal work of Durnin and co-workers already in 1987.
Despite that fact, to the best of our knowledge, the study of propagation of apertured Bessel beams found no
solution in closed analytic form and it often leads to the numerical evaluation of diffraction integrals, which
can be very awkward. In the context of paraxial optics, wave propagation in lossless media is described by an
equation similar to the non-relativistic Schrödinger equation of quantum mechanics, but replacing the time t
in quantum mechanics by the longitudinal coordinate z. Thus, the same mathematical methods can be
employed in both cases. Using Bessel functions of the first kind as basis functions in a Hilbert space, here
we present a new approach where it is possible to expand the optical wave field in a series, allowing to obtain
analytic expressions for the propagation of any given initial field distribution. To demonstrate the robustness
of the method two cases were taken into account: Gaussian and zeroth-order Bessel beam propagation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The main feature of pseudo non-diffracting Bessel beams is their
ability to resist diffractive effects over distances exceeding the usual
diffraction length. The theory and experimental demonstration of
such waves can be traced back to the seminal work of Durnin and
co-workers already in 1987 [1], opening a new era in the study of
diffraction phenomena. Since then, the interest in studying non-
diffracting beams has not ceased to grow, due to their potential appli-
cations in fields of metrology, tweezing, laser surgery and so on. Now-
adays, the study of pseudo non-diffracting beams reached its maturity
and numerous examples of such beams have been both mathemati-
cally and experimentally demonstrated in optics [2–17]. Despite
that fact, to the best of our knowledge, the study of propagation of
apertured Bessel beams found only a few solutions in closed analytic
form [18–20] and it often leads to the numerical evaluation of diffrac-
tion integrals, which can be very awkward. Thus, a convergent series
allowing the analysis of apertured Bessel beam propagation in free
space in closed analytic form is highly desirable.

It is well know that Optics and Quantum Mechanics have a lot in
common. From historical point of view, it was an old formulation
based onOptics byHamilton and Jacobi that inspired Erwin Schrödinger
to put forward his wave mechanical version of quantum mechanics
[21]. In that occasion, Hamilton and Jacobi were searching for an

identification of a particle's trajectory with the gradient of constant
phase surfaces S(x, t) of a wave ψ(x, t)=φ(x)e− i[ωt− S(x, t)].

Indeed, at optical frequencies in the so-called paraxial regime the
propagation of electromagnetic fields is described by a wave equation
analogous to the non-relativistic Schrödinger equation of quantum
mechanics, with the role of time coordinate t in quantum mechanics
played by the longitudinal coordinate z in the paraxial equation.
Thus, the usual mathematical methods of quantum mechanics can
be promptly applied to the study of paraxial optics [22,23]. For in-
stance, group theoretical methods [24], commonly used to describe
the band structure of a solid in condensed matter physics, have been
also applied to the study of photonic band structure in the area of pho-
tonic crystals [25–29].

In the present contribution our main goal is to obtain an analytic
solution in closed form for the study of apertured Bessel beams in
free space. To do that we benefit from the above mentioned analogies
between paraxial optics and quantum mechanics, taking into account
the properties of completeness and closure of basis functions in a
Hilbert space, expanding the wave function in a convenient basis,
which allows one to obtain analytic expressions for the propagation
of any given initial field distribution. In cylindric coordinates the
basis is composed of Bessel functions of the first kind, leading to a
Bessel–Fourier series. In order to show the stability and convergence
of our method, we propagate a Gaussian and a truncated zeroth-order
Bessel beam, whose behavior is extensively related in the current
literature.

The content of this article can be described as follows: in the next
section we will put forward the theoretical framework, pointing out
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the equivalence between paraxial optics and quantum mechanics,
expanding any initial field distribution in terms of a convenient com-
plete basis of functions in a Hilbert space. A Gaussian beam will be
propagated and the obtained results are compared to known analyti-
cal solutions. In Section 3, we will study the propagation of an aper-
tured zeroth-order Bessel beam in free space, using the Bessel
functions as the basis for a Fourier–Bessel series expansion of the
propagated field and discuss the convergence and properties of the
series. To finish, in the last section, a few conclusions and remarks
are added.

2. Theoretical framework

Let us start this section through a brief review of main aspects of
non-relativistic Schrödinger equation, shown below [30]:

iħ
∂ψ
∂t ¼ − ħ2

2m
∇2ψþ Vψ ; ð1Þ

being ψ as the quantum-mechanical complex wavefunction, ħ=
h/(2π) the Planck's constant,m as the particle mass and V as the poten-
tial energy. Defining the Hamiltonian operator as Ĥ ¼ − ħ2

2m∇2 þ V , one
has an eigenvalue problem of the form Ĥψn ¼ Enψn for functions of the
form ψn(x,y,z, t)=e− iEnt/ħψn(x,y,z,0), given the boundary conditions
ψ(∞)→0 and ∫ψ†ψd3x=1, leading to the knowledge of an orthonor-
mal set of basis functions in a complex vector space known as a Hilbert
space. Such basis allows to expand any quantum mechanical field ψ in
the following way:

ψ x; y; z; tð Þ ¼ ∑
n

cn 0ð Þe−iEnt=ħψn x; y; z;0ð Þ;

being cn as complex amplitudes and, in principle ∫ψm
† ψnd

3x=δmn,
where δmn is the Kronecker delta function. It is important to notice
that ∑n|cn|2=1, which means that the norm of the abstract vector ψ
is preserved.

After those considerations on quantum mechanics, let's turn the
attention to the wave equation in frequency domain, the so-called
Helmholtz Equation:

∇2 þ k2
� �

Φ x; y; zð Þ ¼ 0 ; ð2Þ

where k2=n2ω2/c2=2π/λ, n(x,y,z,ω) is the refractive index of the
medium and the wave functionΦ is used to merge the time harmonic
electric and magnetic fields, E and H, respectively, into a single entity,
as follows:

Φ ¼ E
ZH

� �
e−iωt

; ð3Þ

being Z ¼ ffiffiffiffiffiffiffiffi
μ=ε

p
as the characteristic impedance of a medium with

magnetic permeability μ and dielectric permissivity ε. Next, we write
Φ(x,y,z)=Ψ(x,y,z)eiβz, removing the rapid variations of the wave
function along the z-axis, which we assume to be the longitudinal co-
ordinate. Neglecting second order derivatives ofΨ(x,y,z) with respect
to z (paraxial regime) we get:

i
∂Ψ
∂z ¼ − 1

2β
∇2

⊥Ψ þ k2−β2
� �

Ψ
h i

; ð4Þ

where∇⊥
2=∂ 2/∂x2+∂ 2/∂y2 is the transverse laplacian operator and

β is the propagation constant along the longitudinal axis. The above
expression is the so-called paraxial wave equation.

Looking at Eqs. (1) and (4), one can notice enormous similarities
between them, with the role of time coordinate t in Eq. (1) being
played by the longitudinal coordinate z in Eq. (4), the full laplacian

operator ∇ 2 in the quantum mechanical Schrödinger equation is
replaced by its transverse version ∇⊥

2 in the paraxial wave equation
and the potential energy V(x,y,z, t) corresponding to [k2(x,y,z)−β2]/
(2β). In this way, the samemathematical methods employed in quan-
tum mechanics can be used in the study of paraxial optics.

In free space we can make k=β and the paraxial wave Eq. (4) re-
duces to:

i
∂Ψ
∂z ¼ − 1

2k
∇2

⊥Ψ : ð5Þ

Obviously the so-called ideal or non-diffracting Bessel beams, de-
fined as Ψ(ρ,ϕ, 0)=Am(kρ)Jm(kρρ)eimϕ, being m=0,1,2,3… an inte-
ger and 0≤kρb∞ a real number, do form a complete set of basis
functions for the solution of the wave equation in cylindric coordi-
nates (ρ,ϕ,z), as is the case of uniform plane waves in cartesian coor-
dinates. A formal integral solution of the above equation in cylindric
coordinates, using the Bessel beams in unlimited free space
(0≤ρ≤∞ and 0≤ϕ≤2π) as the basis is given by:

Ψ ρ;ϕ; zð Þ ¼
X∞
m¼0

eimϕ∫∞
0
kρdkρe

−i
k2ρ
2kzAm kρ

� �
Jm kρρ
� �

; ð6Þ

where the coefficients are determined in the following way:

Am kρ
� �

¼ 1
2πð Þ2 ∫

∞
0
ρdρ∫

2π

0
dϕΨ ρ;ϕ;0ð ÞJm kρρ

� �
e−imϕ

; ð7Þ

beingΨ(ρ,ϕ,0) as the initial field distribution. An ideal Bessel beam of
order n is obtained by making Am(α)=2πδmnδ(kρ−α), being δmn the
Kronecker delta function and δ(kρ−α) the Dirac delta function. In
practice such ideal Bessel beams extending over the range 0≤ρ≤∞
cannot be realized experimentally because they demand an infinite
amount of energy to be produced. By contrast, finite aperture realiza-
tions of Bessel beams are feasible, resisting the diffractive effects over
propagated distances greater than the Gaussian beams, for example.
The distance over which they can be considered invariant exceeds
the usual diffraction length [1]. However, for the truncated Bessel
beam (Ψ(ρ,ϕ, 0)= Jm(αρ)eimϕ,ρ≤a and Ψ=0,ρ>a) corresponding
to the real world, it turns out that expressions (6) and (7) cannot be
solve altogether analytically.

Our primary concern here is to obtain analytical expressions for the
propagation of a truncated Bessel beam, which cannot be obtained
using a complete basis in the physical space 0≤ρ≤∞. But since the
practical apertured Bessel beam is truncated, existing initially for
0≤ρ≤a only, we will be able to obtain a series in closed analytic
form by weakening the general requirement of a well behaved solu-
tion valid inwhole physical domain 0≤ρ≤∞, limiting the region of in-
terest to the physical region 0≤ρ≤ρ0, being ρ0>a, resulting in a
discrete set of basis functions subjected to a Dirichlet boundary condi-
tion at ρ=ρ0, instead of a continuous set of basis functions. Following,
let's show how it is possible to do that.

Defining the differential operator Ĥ0 ¼ − 1
2k∇2

⊥, which is the ana-
log of the Hamiltonian in quantum mechanics, being hermitian and
thus preserves the norm of the wave function ψ, we can write the for-
mal solution to Eq. (5) as follows:

Ψ ρ;ϕ; zð Þ ¼ e−iĤ0zΨ ρ;ϕ;0ð Þ: ð8Þ

Given the initial fieldΨ(ρ,ϕ,0), a direct calculation can be done by
expanding the exponential in Taylor series, but such a procedure usu-
ally leads to slowly converging solutions. In order to overcome such a
difficulty we will use the eigenfunctions of Ĥ0 in the domain
0≤ρ≤ρ0, 0≤ϕ≤2π subjected to a Dirichlet boundary condition at
ρ=ρ0, forming a complete vector space of functions to expand the
initial field. In cylindric coordinates (ρ,ϕ), the eigenvalue problem
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