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In this paper, a similarity transformation is presented to reduce the generalized (3+1)-dimensional cubic–
quintic nonlinear Schrödinger equation with distributed coefficients to the related constant-coefficients
one. Then a number of spatiotemporal self-similar wave solutions are constructed. Under the specific choice
of the dispersion, cubic and quintic nonlinearities, phase modulation and the gain/loss, we investigate the dy-
namical behaviors of those spatiotemporal self-similar waves in an inhomogeneous optical fiber media.
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1. Introduction

In the past decade, there has been a great deal of theoretical and
experimental investigations in models based on nonlinear Schrödin-
ger equation (NLSE), which can be applied widely to many branches
of physics and applied mathematics, including nonlinear quantum
field theory, condensed matter and plasma physics, nonlinear optics
and quantum electronics, and so on. Due to the potential application
of optical solitons in long distance telecommunication, more and
more attention has been attracted to different versions of NLSE
which can describe nonlinear management and dispersion manage-
ment for temporal or spatial optical solitons, soliton lasers, and ultra-
fast soliton switches in nonlinear fibers [1,2]. Many methods have
been developed to obtain the soliton solutions of various NLSEs
with various nonlinearities and dispersions, and the dynamics of the
excitation of the solitons was discussed [3,4,5,6,7,8,9,10,11,12]. For
example, Serkin et al. presented a systemmethod to construct analyt-
ical solutions for (1+)-dimensional variable-coefficients NLSE and
discussed nonautonomous soliton dispersion management [3]; Dai
et al. investigated the similariton transmission control in the disper-
sion decreasing fiber [4]; Li et al. investigated interactions of dark sol-
itons in photovoltaic photorefractive crystals with diffusion
nonlinearity [5]. Recently, a kind of NLSE called Gross–Pitaevskii
(GP) equation is presented and used to describe a dilute gas of weakly
interacting atomic particles. The GP equation has become an impor-
tant theoretical tool in recent Bose–Einstein condensates (BECs)

experiments [13,14], the various nonlinear excitations of matter-
wave solitons have been observed and studied [15,16,17,18].

The above studies have stimulated a large amount of research ac-
tivities on nonlinear optics and BECs. Especially, great interest is fo-
cused on the (2+1)dimensional (D) and (3+1)D NLSEs from
various view points [19,20,21,22,23,24,25], which provide excellent
proving grounds for exploring higher-dimensional nonlinear systems
with distributed coefficients. In this paper, we will focus our interests
on a generalized (3+1)-dimensional (D) cubic–quintic nonlinear
Schröinger equation (CQNLSE) with distributed coefficients in an in-
homogeneous optical fiber media. Historically, this model was first
studied by Serkin et al., where the topological quasi-soliton solutions
for the inhomogeneous CQNLSE were found [26]. Recently, various
solitary-wave solutions and modulational instability are studied in
[27,28,29,30]. Furthermore, nonlinear optical organic materials and
waveguides have been investigated as the key elements for future
telecommunication and photonic technologies, where thin films of
polydiacetylene para-toluene sulfonate exhibit the cubic–quintic
nonlinearity [31].

The paper is organized as follows. In Section 2, by making use of
the symmetry group direct method [32,33] and symbolic computa-
tion, we present a similarity transformation to the generalized (3+
1)D CQNLSE, where it can be reduced to the related constant-
coefficient (3+1)D CQNLSE. In Section 3, some exact spatiotemporal
self-similar solutions of the generalized (3+1)D CQNLSE are con-
structed through the similarity transformation and the well-known
Jacobi elliptic function solutions of the related constant-coefficient
(3+1)D CQNLSE. In Section 4, we investigate the dynamics of self-
similar waves in dispersion decreasing fiber and dispersion changing
periodically fiber. Finally, a summary is given in Section 5.
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2. Similarity transformation of (3+1)D CQNLSE with variable
coefficients

The evolution of a slowly varying wave packet envelope u(z,x,y, t)
in a diffractive nonlinear Kerr medium with anomalous dispersion, in
the paraxial approximation, can be written as

i
∂u
∂z þ

ρ zð Þ
2

∇2uþ g3 zð Þju 2uþ g5 zð Þ
��� ���u 4uþM zð Þr2u−iγ zð Þu ¼ 0;

��� ð1Þ

where ∇ 2=∂ xx+∂yy+∂ tt and r2=x2+y2+z2, z is the propagation
coordinate, and t the reduced time, i.e., time in the frame of reference
moving with the wave packet. All coordinates are made dimension-
less by the choice of coefficients. ρ(z) is the group velocity diffraction
or dispersion parameter, and g3(z) and g5(z) represent cubic and
quintic nonlinearities, respectively. The functions M(z) and γ(z) are
related to phase modulation, and gain/loss coefficients, respectively.
The generalized CQNLSE is of considerable importance. When
g5(z)=M(z)=0, it describes the full spatiotemporal optical solitons,
or light bullets, in (3+1)D [22,23]. When M(z)=0, Jiang et al. inves-
tigated the spatiotemporal self-similar solutions and discussed the re-
lated dynamical behaviors [24]. When ρ(z)=γ(z)=0, Gao et al.
derived some exact solutions by a simple similarity transformation
[25].

On the basis of the idea of the symmetry group direct method, we
can assume the solutions of Eq. (1) is in the form of

u ¼ δ zð Þψ ζ ; ξ; η; τð Þexp iϕð Þ; ð2Þ

where ζ,ξ,η,τ are all real functions of {z,x,y, t}, δ(z) and ϕ=φ(z,x,y, t)
are real functions and the complex function ψ satisfies the (3+1)-di-
mensional constant-coefficient CQNLSE

i
∂ψ
∂ζ þ k1

∂2ψ
∂ξ2

þ ∂2ψ
∂η2

þ ∂2ψ
∂τ2

 !
þ k3 ψ 2ψþ k5

��� ���ψ 4ψ ¼ 0;
������ ð3Þ

where k1,k3,k5 are real constants. Here, it is necessary to point out
that according to Lie group theory, we should assume ψ to be satisfied
the same equation as Eq. (1) with independent variables {ζ,ξ,η,τ} and
variable-coefficients {ρ(ζ),g3(ζ),g5(ζ),M(ζ),γ(ζ)}. For questions dis-
cussed in this paper, we set ψ to be satisfied with the simpler form
(Eq. (3)).

Substituting Eq. (2) into Eq. (1), and eliminating ψζ by Eq. (3), we
can obtain a polynomial differential equations with respect to ψ and
its derivatives. Then collecting their coefficients of ψ and its deriva-
tives and separating the real part and imaginary part, we can obtain
a set of nonlinear PDEs. An equation among them is ζx2+ζy2+ζt2=0,
so we can obtain

ζ ¼ θ zð Þ: ð4Þ

Then substituting Eq. (4) into the set of nonlinear PDEs, we can
obtain the following set of PDEs:

ρ n2
x þ n2

y þ n2
z

� �
−k1 _θ ¼ 0; n ¼ ξ; η; τð Þ;

ρ 2 nxφx þ nyφy þ ntφt

� �
−i nxx þ nyy þ ntt

� �h i
þ 2nz ¼ 0; n ¼ ξ; η; τð Þ;

ρδ φxx þ φyy þ φtt

� �
þ 2 _δ−δγ
� �

¼ 0;

ρδ φxx þ φyy þ φtt

� �
þ 2δ φz−M x2 þ y2 þ z2

� �h i
¼ 0;

ξxηx þ ξyηy þ ξtηt ¼ 0;
ηxτx þ ηyτy þ ηtτt ¼ 0;
τxξx þ τyξy þ τtξt ¼ 0;
kj _θ−gjδ

j−1 ¼ 0; j ¼ 3;5ð Þ
ð5Þ

where the subscript means its derivative with respect to x,y, t,z, and
the dot over the function means its derivative with respect to time

z. With the help of symbolic computation, we obtain the following so-
lutions of Eqs. (5)

δ ¼ δ0α
3=2exp ∫z

0 γdz
� �

; θ ¼ s
k1

∫z
0 ρα

2dz;

ξ ¼ α a1xþ a2yþ a3tð Þ−
X3
j¼1

ajej∫
z
0 ρα

2dz;

η ¼ α b1xþ b2yþ b3tð Þ−
X3
j¼1

bjej∫
z
0 ρα

2dz;

τ ¼ α c1xþ c2yþ c3tð Þ−
X3
j¼1

cjej∫
z
0 ρα

2dz;

ϕ ¼ −
_α x2 þ y2 þ t2
� �

2ρα
þ α e1xþ e2yþ e3tð Þ

−1
2

e21 þ e22 þ e23
� �

∫z
0 ρα

2dz;

ð6Þ

where {ρ(z),M(z),α=α(z),g3(z),g5(z)} satisfy the following condi-
tions:

2Mρ2α2 þ ρα €α−2ρ _α2−α _α _ρ ¼ 0; g3 ¼ k3 _θ
δ2

; g5 zð Þ ¼ k5 _θ
δ4

; ð7Þ

and {ai, bi, ci (i=1,2,3)} satisfy the following algebraic equations

X3
j¼1

a2j ¼
X3
j¼1

b2j ¼
X3
j¼1

c2j ¼ s;
X3
j¼1

ajbj ¼
X3
j¼1

bjcj ¼
X3
j¼1

cjaj ¼ 0; ð8Þ

and δ0,ei(i=1,2,3) are arbitrary constants and s is a positive
constant.

Thus a similarity transformation between Eq. (1) and Eq. (3) can
be obtained

u ¼ δ0α
3=2exp ∫γdz

� �
ψ θ; ξ; η; τð Þexp iϕð Þ; ð9Þ

where {θ,ξ,η,τ,ϕ} are determined by Eq. (6) with Eqs. (7)–(8).

Remark 1. To our knowledge, the similarity transformation (Eq. (9))
is a more general transformation. On the one hand, some results by
many authors can be reproduced from it. We can cite two examples
as follows. (i) If setting M(z)=0 in Eq. (7), we can derive a solution
α=(1+h∫0

z ρdz)−1. If further setting bj=cj=0(j=1,2,3) and elim-
inating the constrained conditions (Eq. (8)), it is easy to verify that
the similarity transformation obtained in Ref. [24] can be recovered
by our similarity transformation (Eq. (9)). (ii) If setting g5(z)=
γ(z)=k5=0, k1 ¼ 1

2 ; k3 ¼ 1 and e1=e2=e3=0, the transformation
in Ref. [25] can be reproduced by Eq. (9). On the other hand, the Lie
point symmetry of Eq. (9) under some special parameters can be de-
rived by the transformation (Eq. (9)). For example, if setting ρ=k1,g3
(z)=k3,g5(z)=k5,M(z)=0 in Eq. (1), i.e., Eq. (1) is the same form as
Eq. (3) besides using different variables, thus we can derive the finite
symmetry group transformation from Eq. (9) and further obtain the
corresponding Lie point symmetry.

3. Exact spatiotemporal self-similar solutions for (3+1)D CQNLSE

In this section, we first give some simple solutions of Eq. (3) in
terms of Jacobi elliptic functions, which involves hyperbolic secant
functions and hyperbolic tangent functions as special cases. Next we
can easily write down the general solutions for Eq. (1) by the similar-
ity transformation (Eq. (9)).

With the help of symbolic computation and some direct assump-
tions, one can obtain six types of traveling wave solutions for
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