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The line integral of the boundary diffraction wave theory is extended for the diffraction process of waves
by the impedance surfaces with edge discontinuities. With this aim, the exact diffraction field expression
of Maliuzhinets is transformed into a line integral. The method is applied to the scattering problems of
waves by a spherical reflector with edge discontinuity and the diffracted fields are evaluated asymptotically.
The resultant expressions of the waves are examined numerically.
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1. Introduction

The theory of the boundary diffraction wave (BDW) is based on
the qualitative ideas of Young [1] and is an important method for
the analysis of the diffraction effects by optical devices [2–5]. Accord-
ing to Young, the scattered field by an obstacle consists of the inter-
ference of two sub-fields. The first one is the geometrical optics
(GO) waves, which propagates unaffected by the scatterer and has a
discontinuity at the geometrical shadow. The second component is
the boundary diffraction field that is radiated by the edge or wedge
discontinuity of the obstacle and compensates the GO wave at the
transition region. For this reason, the diffracted wave has a phase
shift of 180° at the shadow boundary. The ideas of Young were formu-
lated by Maggi [6] and Rubinowicz [7] independently. They managed
to separate the diffraction integral of Kirchhoff [8], which represented
the total scattered field by an obstacle, into two parts as the GO and
diffracted field components. The diffracted field was expressed in
terms of a line integral over the edge discontinuity of the scatterer.
The line integral of Maggi and Rubinowicz was valid for the plane
and spherical wave incidence. Miyamoto and Wolf extended the
theory of BDW for arbitrary waves [9,10]. Rubinowicz investigated
in detail the method of BDW and proposed two simple models for
the arbitrary incidence in the review paper [11].

However the actual form of the BDW theory, developed by the
authors mentioned above, has two important defects. First of all the
line integral of BDW is not uniform at the shadow boundary, because
the diffracted field approaches to infinity at this region [12]. This
problem was first realized and mentioned by Rubinowicz [13]. In
the related work, he offered a method for the uniformization of the
BDW line integral. Thus Rubinowicz was the first person, who devel-
oped a uniform theory of diffraction, although this fact is not well

known in the literature [14]. We also obtained a uniform line integral
representation of the BDW theory, in its actual form developed by
Maggi–Rubinowicz, by using an asymptotic relation of the Fresnel
function [15].

The second important defect of the actual theory is the incorrect
diffraction fields that are obtained by the line integrals of Maggi and
Rubinowicz. This problem occurs because the line integrals of BDW
method are based on the diffraction integral of Kirchhoff. The integral
of Kirchhoff yields incorrect edge diffraction contributions like the
method of physical optics (PO) [16,17]. We outlined the reasons of
the incorrect diffraction contributions of the PO and Kirchhoff inte-
grals and developed a new method, which gives the exact diffracted
waves by conducting surfaces [18,19]. Based on the developed meth-
od, we reintroduced the line integral of the BDW theory [20] and its
uniform representation [21,22]. The recent developments about the
theory of BDW can be found in Ref. [23].

The line integral of BDW theory desires a further improvement,
which is related with the boundary conditions of the scatterer's sur-
face. In reality, the obstacle absorbs a portion of the incident wave
and the power of the reflected wave is less than that of the incident
field. Such surfaces are modeled by the impedance boundary condi-
tion [24]. For example a metallic surface, coated with a dielectric
layer, can be represented by the impedance boundary condition.
The first solution of the diffraction problem of waves by an imped-
ance half-plane was put forward by Senior with the method of
Wiener–Hopf factorization [25]. In 1960, Maliuzhinets obtained a
more general solution of the scattering problem for a wedge with
different face impedances [26]. This solution also includes the case
of the half-plane. Maliuzhinets used the mathematical theory of dif-
fraction, developed by Sommerfeld [27]. Thus the actual line integral
of the BDW theory cannot be used for the analysis of the diffracted
fields by the impedance surfaces. In 2008, we investigated the effect
of the impedance boundary conditions on the line integral of the dif-
fraction fields [28]. In that study, we used a PO based solution of the
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half-plane problem, which was in harmony with the diffracted field
expression of Senior [29].

The aim of this paper is to introduce a more general line integral
of the BDW theory that will include the diffraction waves by edge dis-
continuities with different face impedances. Thus we will transform
the edge diffraction field of Maliuzhinets into a line integral by
using a method, developed by us for wedge diffraction problems of
PO [30]. The new integral will be applied to the scattering problem
of waves by a spherical reflector with edge discontinuity. The dif-
fracted waves will be evaluated asymptotically and the resultant
fields will be examined numerically.

A time factor of exp( jωt) is taken into account and suppressed
throughout the paper. ω is the angular frequency. The cylindrical
and spherical coordinates are represented by (ρ,ϕ,z) and (r,θ,ϕ)
respectively.

2. Theory

We take into account a semi-infinite half-plane, the geometry of
which is given in Fig. 1, and is located at the plane of S={(x,y,z);
x∈(0,∞),y=0,z∈(−∞,∞)}.

An arbitrary incident field of ui(P) is illuminating the screen. P is
the observation point. β and ϕ0 are the angles of scattering and inci-
dence. The diffracted fields by a general edge contour can be given by

ud Pð Þ ¼ 1
2π

∮
C
W
→

⋅dl
→

ð1Þ

whereW
→

is the potential function that can be defined by the equation of

W
→¼ ui Qeð Þf lð Þ exp −jkREð Þ

RE
e
→
l ð2Þ

for Qe is a point on the diffraction edge C. l is the variable on the edge
contour. f(l) is a function to be determined. RE is the distance between
the diffraction and observation points. e

→
l is the unit vector along the

edge contour. The effect of the boundary condition is included in f(l).
Eq. (1) can be rewritten as

ud Pð Þ ¼ 1
2π

∫
∞

−∞
ui z ′ð Þf βð Þ exp −jkREð Þ

RE
dz ′ ð3Þ

for the half-plane. Note that the edge contour of the half-screen is at

z′∈(−∞,∞). RE is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z−z ′ð Þ2

q
. Now we propose that the

half-plane is illuminated by the plane wave of

ui Pð Þ ¼ u0 exp jk x cosϕ0 þ y sin ϕ0ð Þ� � ð4Þ

where u0 is the complex amplitude. The line integral of BDW becomes

ud Pð Þ ¼ u0

2π
∫
∞

−∞
f βð Þ exp −jkREð Þ

RE
dz ′ ð5Þ

in this case. The integral, in Eq. (5), can be evaluated directly by
using the method of the stationary phase [16,18], since its limits vary
between± infinity. The stationary phase point is evaluated by equating
the first derivative of the phase function to zero. Its value is found to be
zs=z for our case. As a result the diffracted field can be evaluated as

ud ¼ u0
exp −jπ=4ð Þffiffiffiffiffiffi

2π
p f π−ϕð Þ exp −jk ρð Þffiffiffiffiffiffiffi

k ρ
p ; ð6Þ

because the stationary phase value of β is π−ϕ at zs=z according to
Fig. 1. The BDW line integral can be constructed by determining the
value of f for various types of diffraction problemswith different bound-
ary conditions. In this paper, we will construct the line integral for the
impedance surfaces. Maliuzhinets obtained the diffracted waves by an
impedance half plane as

ud ¼ exp −jπ=4ð Þffiffiffiffiffiffi
2π

p M ϕ;ϕ0; η∓
� �

cosϕþ cos ϕ0

exp −jk ρð Þffiffiffiffiffiffiffi
k ρ

p ð7Þ

for the incident wave, given by Eq. (4) [26]. η∓ can be defined by

η∓ ¼ sin−1 Z0

Z∓
ð8Þ

where Z+ and Z− are the impedances of the upper and lower surfaces of
the half-screen. Z0 is the impedance of the free space. The function M
can be introduced as

M ϕ;ϕ0; θ∓
� � ¼ sin ϕ0

2
ψ π−ϕ0ð Þ ψ −ϕð Þ sin

ϕ
2
− cos

ϕ0

2

� �
þ ψ 2π−ϕð Þ sin

ϕ
2
þ cos

ϕ0

2

� �	 


ð9Þ

[26,31] for ψ(x) can be defined by the expression of

ψ xð Þ ¼ ψπ xþ 3π
2

−ηþ

� �
ψπ xþ π

2
þ ηþ

� �
ψπ x−π

2
−η−

� �
ψπ x−3π

2
þ η−

� �
ð10Þ

where ψπ(x) is the Maliuzhinets function, which can be written as

ψπ xð Þ ¼ exp − 1
8π

∫
x

0

π sin v−2
ffiffiffi
2

p
π sin v

2 þ 2v
cos v

dv

 !
: ð11Þ

The function f(π−ϕ) can be determined as

f π−ϕð Þ ¼ M ϕ;ϕ0; η∓
� �

cosϕþ cosϕ0
ð12Þ

when Eq. (6) is equated to Eq. (7). Thus f(β) reads

f βð Þ ¼ M π−β;ϕ0;η∓
� �
cosϕ0− cosβ

; ð13Þ

since β is π−ϕ. The line integral of the BDW theory reads

ud Pð Þ ¼ u0

2π
∫
∞

−∞

M π−β;ϕ0; η∓
� �
cosϕ0− cos β

exp −jkREð Þ
RE

dz ′ ð14Þ

for the impedance half-plane.
We can generalize the line integral by taking into consideration

the geometry, given in Fig. 2. n
→
e is a unit vector that is perpendicular

to the edge point at QE. s
→
i and s

→
d are the unit vectors, in the directions

of the incident and diffracted rays. α is the angle of incidence. The
relations of

cos α ¼ s
→
i⋅n
→
e ð15Þ

( )

( )

Fig. 1. Geometry of the half-screen.
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