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Calculation of the scalar diffraction field over the entire space from a given field over a surface is an important
problem in computer generated holography. A straightforward approach to compute the diffraction field from
field samples given on a surface is to superpose the emanated fields from each such sample. In this approach,
possible mutual interactions between the fields at these samples are omitted and the calculated field may be
significantly in error. In the proposed diffraction calculation algorithm, mutual interactions are taken into
consideration, and thus the exact diffraction field can be calculated. The algorithm is based on posing the
problem as the inverse of a problem whose formulation is straightforward. The problem is then solved by a
signal decomposition approach. The computational cost of the proposedmethod is high, but it yields the exact
scalar diffraction field over the entire space from the data on a surface.

© 2011 Published by Elsevier B.V.

1. Introduction

When the input field is specified over a planar surface, the
calculation of monochromatic scalar optical diffraction can be accom-
plished in a straightforward manner by plane wave decomposition or
the Rayleigh–Sommerfeld diffraction integral, or by other methods
derived from these. Integration over the planar surface allows
computation of the exact diffraction field over the entire space.
However, if the input field is specified over a curved surface, rather
than a planar surface, straightforward integration over the curved
surfacemaynot provide the exactfield over the entire space. Calculation
of the exact diffraction field from a curved surface requires greater care
and is the subject of this work [16].

Diffraction field calculation by direct integration over the surface
on which the input field is specified, is essentially a weighted
superposition of the free-space diffraction kernel. However, direct
integration gives the exact field only when the integrated surface field
value remains unaltered by the propagation from other surface
elements. If we simply ignore suchmutual interactions, the calculated
field will be different from the actual field. The method we set forth is
based on the following observation. No such interactions exists when
the input field is specified over a plane; therefore it is straightforward
to express the field on an arbitrary curved surface (and indeed any
region of the entire space) as a weighted superposition integral of the
free-space diffraction kernel over a planar surface. In the problem we
wish to solve, the field is known over a curved surface and we wish to
obtain the field over a planar surface (which would then also enable
us to calculate it over the entire space). Since it is not straightforward

to express the field on the planar surface in terms of the field on the
curved surface, we express the field on the curved surface in terms of
that on the planar surface, and solve an inverse problem to obtain the
field on the planar surface. The inverse problem arising from this exact
formulation can be solved by employing several methods and
standard algorithms, each with their pros and cons. In this paper,
we propose a signal decomposition algorithm for this purpose.

Our interest in diffraction calculations from curved surfaces stems
from our work on computer generated holography (CGH) and three-
dimensional imaging and television [1–4,11,17,20–23]. Since the
diffraction field from an arbitrarily shaped object is the field that we
desire to recreate at the display end, its accurate calculation is of utmost
importance.

In both computer graphics and CGH, objects are commonly
modeled as a set of sample points distributed over space [8,9,14,15].
It is assumed that the characteristics of the continuous object can be
sufficiently represented by these sample points. A straightforward
approach to compute the diffraction field created by an object is to
superpose the fields created by each sample point of the object; doing
so amounts to treating each sample point as a light source. We will
refer to diffraction field calculation approaches based on superposi-
tion of the fields at each sample point of the object as “source model”
approaches. In these approaches, it is assumed that the value of each
source is independent of the field at other points. Then, the
independently computed fields from these points are superposed.
The calculated field will be the same as the actual field only if the
points truly act as sources (i.e., if the values of these sources are not
perturbed by the superposed field generated by the other sources).
However, usually there are complicating interactions. Consequently,
the field calculated using the source model will not be exact or may
even be significantly in error. Diffraction field calculations based on
the source model have the advantage of having reasonable
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computational complexities, but they are not necessarily exact except
when all the sample points are given over a planar surface.

With the termmutual interaction we refer to the fact that the field
at a given input point is not independent of the field at the other input
points; in other words, it is not possible to specify them indepen-
dently and arbitrarily.

Ignoring the mutual interactions and straightforwardly superposing
the specified input field values will not give exact results. Instead, a
simultaneous calculation of the diffraction field due to the given input
points is necessary. We will refer to approaches based on such
simultaneous calculation of the diffraction field as “field model”
approaches. The diffraction field computation method presented in
this paper is based on such an approach and uses a decomposition of the
field specified over an orientable manifold onto a function set obtained
from the intersection of the propagating plane waves by the manifold.

The algorithm we propose can be used for both two-dimensional
(2D) and three-dimensional (3D) spaces. For simplicity we will first
discuss the 2D case. In the 3D case, numerical issues due to larger data
sets arise. Nevertheless, as a proof of concept the extension of the
proposed algorithm to the 3D case is also presented.

2. Calculation of the diffraction field using the source model

Computation of the diffraction field arising from the samples of an
object or a set of given sample points over the space can be performed
in several ways. One of the most commonly employed methods is to
superpose the fields emitted by the sample points. As discussed in
Section 1, we refer to such methods as source model methods. In the
literature, there are several diffraction field computation algorithms
based on the source model approach [5,8,9,13]. Implementation of
source model algorithms is rather straightforward because mutual
interactions are not taken into consideration.

Depending on the distribution of the sample points over the space,
the effect of mutual interactions can be significant. A simple example
will help illustrate the issues involved (Fig. 1). We consider three
points P1, P2, P3 which create the field, ψ(x), over the entire space.
Here the coordinate vector x denotes [x z]T. According to the source
model approach, the field over the reference line is computed by
superposing the fields created by the field samples at P1=x1, P2=x2,
P3=x3 (which are assumed as sources). The diffraction field

emanating from these sample points is usually calculated by using
the kernel of the Rayleigh–Sommerfeld (RS) diffraction integral. More
specifically, the field f(x) over the line z=0 is expressed in terms of
the strengths ψ(x1), ψ(x2), ψ(x3) of the sources as

f xð Þ = ψ x1ð Þh x−x1ð Þ + ψ x2ð Þh x−x2ð Þ + ψ x3ð Þh x−x3ð Þ ð1Þ

where h(x) denotes the 2D version (i.e., y=0 case) of the RS
diffraction kernel due to propagating waves,

h xð Þ = 1
jλ

exp j 2πλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p cos θ; ð2Þ

where cos θ = zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p and λ is the optical wavelength. The above

expression gives the field on the reference plane arising from these
three points. Quite often, the cosθ term is ignored; omitting this term
may result in significant errors if θ is not small. It is instructive to note
that the Rayleigh–Sommerfeld kernel is the impulse response for field
computations where the wave propagates out from a planar surface;
this is different than a spherically symmetric propagation out from a
simple free-standing point source. Using the expression we have
obtained for the field on the reference line, we may now calculate
back the field values at P1, P2, P3 again by using the RS diffraction
integral. In general it turns out that the values obtained are not equal
to the original values specified at P1, P2, P3. Thus even with such a
simple scenario, it is possible to see the effect of the interactions
between the specified source points. For instance, the deviation
between the calculated field and the initially specified field at P1 is
found as

Δψ x1ð Þ = ψ x2ð Þ cos θ1;2jr1;2 j
exp j

2π
λ

jr1;2 j
� �

+ ψ x3ð Þ cos θ1;3jr1;3 j
exp j

2π
λ

jr1;3 j
� �

ð3Þ

where r1, 2 is the vector between points P1 and P2, and θ1, 2 denotes the
angle between the vector r1, 2 and the z-axis as shown in Fig. 1.
Similarly, the vector r1, 3 denotes the difference between the position
vectors x1 and x3, and θ1, 3 is the angle between the vector r1, 3 and the
z-axis. This deviation is exactly the additional field imposed on P1 by
the sources at P2 and P3 under the RSmodel. A similar deviation can be
shown also for P2 or P3. These deviations from the initially specified
fields at each sample point depend on the initial field values on the
other sample points and their mutual positions in space. As a result of
these interactions between the fields emanating from the sources, the
sourcemodel approachmay not provide the exact field over the entire
space.

For a discrete set of points, there will be no mutual interactions
among the sample points if the following condition is satisfied:

ψ xið Þ = ∑
j

j≠i

ψ xj

� �
h xi−xj

� �
= 0; ∀ i ð4Þ

where ψ(xj)h(xi−xj) is the field generated at location xi by point j.
This is satisfied for the classical case of diffraction computation from
the points which lie on a plane.

By the way, above observations are still valid if other diffraction
models, (for example, the Fresnel–Kirchoff approximation) are
utilized instead of the RS formulation.

In the source model, the computation of the continuous diffraction
field over the entire space can be expressed as an integral over a
surface Sa as

ψ xð Þ = ∫
Sa

ψ xð Þh x−xð ÞdS ð5ÞFig. 1. Illustration of possible mutual couplings in the source model approach for a 2D
space. The x-axis is taken as the reference line.
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