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A circularly polarized plane wave of infinite transverse extent (δ=∞) has no spin angular momentum, while a
realistic light does carry it. This paradox originates from the presence (δ=∞) and absence (δ≈0) of the
surface integral in the total angular momentum J. The same holds for the torque equation of d J/dt, so that δ is
also connected with the relative Faraday rotation angle ΘF/θF when a radius (a) of a cylindrical medium with
optical activity is only a little larger than that (b) of light beam, where ΘF is the Faraday rotation angle and θF is
the intrinsic Faraday rotation angle of a medium. It is shown here that it is possible to estimate δ for a realistic
light from the drastic variation in ΘF/θF near b/a=1.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The angular momentum (AM) carried by light can be characterized
by the spin AM associated with circular polarization and the orbital AM
associatedwith the spatial distribution of thewave. Both spin andorbital
angular momenta of light beam have in fact been measured [1–4].
Theoretically, the spin and orbital angular momenta (S and L) of the
radiation fields have been defined explicitly for free space and an
isotropic medium [5–8]. The spin AM arises even from the transverse
plane electromagnetic waves, but the orbital AM never appears in the
plane electromagnetic waves.

As is generally known, however, a circularly polarized planewave of
infinite transverse extent can have no spin AM [9]. However, only a
quasiplane wave of finite transverse extent δ carries the spin AMwhose
direction is along the direction of propagation. As evident from the
definition of the AM, the component of the AM in the direction of
propagation must be zero, but it is non-zero actually. This paradox has
been subject of discussion for a long time [9] and even recently [10–12].
Some ideas [8,10,13–15] were proposed to resolve this paradox, but it
has not yet been settled. At present, one justifies these results by taking
into account the fact that a detector placed in a plane wave causes
gradients in this field [14]. The field can no longer be considered as a
planewave. In otherwords, any obstacle that absorbs the beam changes
the electromagnetic field at the edges of the obstacle so that the field
components in the direction of propagation are produced. Recently,
another thought different from this was proposed by Stewart [15]. He

took into account the effect of boundaries on theplanewave problemby
decomposing the AM into three items of two volume integrals of a spin
character and an orbital character and one surface integral and
concluded that the contribution to the AM arises from the edges of
the beam. This idea seems to be reasonable and consistent theoretically.
In his paper [15], however, the contribution from the surface integral to
the AM has not been expressed as a function of δ, where δ is the
transverse extent of theplanewave. For this reason, it is shownhere that
the contribution from the surface integral to the AM of the plane wave
can be expressed analytically as a function of δ, on the assumption that
the intensity profile of the optical fields forms a flat plateau for r≤b and
decreases according to exp [−(r−b)/δ] for rNb, where r is the radial
distance fromthe center axis of beamandb is a radius of beam. The same
is also applicable to the torque equation of AM. This torque equation
links directly to the relative Faraday rotation angle (ΘF/θF) expressed as
a function of δ, where ΘF is the Faraday rotation angle and θF is the
intrinsic Faraday rotation angle of a medium. Of course, the transverse
extent δ has not yet been measured for a realistic light, because there
was no experimental procedure for measuring it. For this reason, we
show here that it is possible theoretically to estimate δ from the
measurement of the Faraday rotation angle when a is only a little larger
than b, where a is a radius of an optically cylindricalmedium.When this
experiment was carried out successfully, the transverse extent of a
realistic light is revealed so that the above paradox is resolved explicitly.

The purpose of this study is to clarify the relation between the
surface integrals in the torque equation for AM and the transverse
extent δ or the relative Faraday rotation angle ΘF/θF, and to provide a
new experimental procedure for measuring the transverse extent of a
realistic light, resulting in the resolution of the traditional paradox.
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2. Analysis

2.1. The definition of angular momentum for electromagnetic fields

The Maxwell equations for the macroscopic electromagnetic fields
in a medium are given by [16]

∇ × E = −∂B
∂t ; ð1Þ

∇ × H =
∂D
∂t + I; ð2Þ

∇·D = ρ; ð3Þ

∇·B = 0: ð4Þ

It is assumed here that the medium is inhomogeneous and
anisotropic but is free of dispersion. In these equations, the electric D
andmagnetic B induction fields are related to the field strengths E and
H asDi= x, y, z=Σj= x, y, zεijEj and Bi= x, y, z=Σj= x, y, zμ ijHjwhere εij and
μij represent the permittivity and permeability tensors, I is the electric
current density, and ρ is the charge density.

Let us consider an arbitrary volume τ inside the crystal filled by
charges, described by the volume density ρ and current density I.
Because of the interaction with the electromagnetic field, the charges
experience a total mechanical torque dLc/dt given by [17]

dLc
dt

= ∫τdvr × ρE + I × Bð Þ½ �; ð5Þ

where Lc is the mechanical angular momentum of the (charged and
neutral) particles. Substituting I and ρ from Eqs. (2) and (3) into
Eq. (5), we get, after some manipulations,

d
dt

Lc + Jð Þ = ∫τdv r × E ∇ · Dð Þ–D × ∇ × Eð Þ–B × ∇ × Hð Þ½ �f g; ð6Þ

where the angularmomentum J of electromagnetic fields in amedium
is defined as

J = ∫τdv r × D × Bð Þ½ � ð7Þ

in analogy to the interpretation of the linear momentum density
(D×B) in a medium [6,16]. This definition is valid at least when the
medium is linear, but not necessarily isotropic, in its response [16].
However, we do not enter here into the well-known question of the
correct definition of momentum in media.

2.2. The angular momenta of radiation fields and their torque equations

The electromagnetic fields can be separated into transverse and
longitudinalfields, which have by definition a vanishing divergence and
curl, respectively. The magnetic field is purely transverse, while the
longitudinal electric induction field D∥ is given by the instantaneous
Coulomb field arising from the charge density ρ, i.e., ∇·D∥=ρ. The
transverse electric induction field D⊥ thus describes the radiation part,
which contains in fact the only real dynamical degrees of freedomof the
field. The symbols || and ⊥ denote the components parallel and
perpendicular to the optical axis, respectively. For D⊥, therefore, Eq. (3)
may be rewritten as

∇·D⊥ = 0: ð8Þ

Generally, the radiation gage is defined asφ=0 and∇·A=0 in the
gage transformation, where φ is the scalar potential and A is the
vector potential[16]. This gage is applicable to the transverse part of
the electromagnetic fields and is often used when the charge and

current are absent [6,7]. In the radiation gage, therefore, the electric
field E⍊ and magnetic induction field B are expressed by the vector
potential A⍊ as [7]

E⊥ = −∂A⊥
∂t ð9Þ

and

B = ∇ × A⊥; ð10Þ

where E⍊ and A⍊ are the transverse components of E and A. In other
words, this is the same as the Coulomb gage for φ=0. The transverse
part A⊥ of the vector potential is thus gage invariant. We will hereafter
treat D, E and A as D⍊, E⍊ and A⍊, respectively. By substituting Eq. (10)
into Eq. (7) and applying partial integration, the angular momentum J
[5–7] defined previously for the transverse electromagnetic field is
separated into three parts as

J = ∫τ D × Að Þdv + ∫τΣi=x; y; zDi r × ∇ð ÞAidv

+ ∫Σ A × rð Þ D·dsð Þ = S + L + SΣ;

ð11Þ

where the symbol∇ is the gradient operator, and S, L and SΣ represent
the volume integrals with spin and orbital characters and the surface
integral, respectively, which are as follows,

S = ∫τ D × Að Þdv; ð12Þ

L = ∫τΣi=x; y; zDi r × ∇ð ÞAidv ð13Þ

and

SΣ = ∫Σ A × rð Þ D·dsð Þ: ð14Þ

When the radiation gage is employed, therefore, the angular
momentum of J is gage independent. In this sense, the separation of S
and L has a clear physical meaning [6,7], but we recognize that the
identification of terms as spin and orbital momentamay not be unique
in general. However, the orbital AM is ignored in this and subsequent
subsections because we treat only the plane electromagnetic wave.
When the electromagnetic field in an isotropic medium is composed
of the plane wave of infinite extent, the surface integral of SΣ can be
transformed to the volume integral of −∫τ (D×A)dv, so that S and SΣ
cancel out, resulting in J=0 [9]. When the electromagnetic field has
infinitesimal extent, however, the surface integral of SΣ vanishes and
only the volume integral of S survives, resulting in J=S. The surface
integral thus varies significantly with changes in the magnitude of the
transverse extent of the plane wave. Let us consider the plane waves
of finite extent δ which form a light beam of radius b propagating
along the z axis in a cylindrical medium of radius a, as shown in Fig. 1.
Since it is difficult to calculate exactly the intensity profile of the
optical fields, for simplicity, it is assumed here that the intensity
profile of the optical fields forms a flat plateau for r≤b, while for r≥b,
it is expressed by a function of exp [−(r–b)/δ], as shown in Fig. 1(b),
where r is the radial distance from the center axis of beam and (r–b) is
the distance from the edge of beam. It means that the intensity of the
optical fields in the outside of beam core decreases exponentially and
concentrically with an increase of (r–b). When the intensity of the
optical fields at the distance δ from the beam edge is assumed to lower
down to 1/e of that at the beam edge, δ represents the average
transverse extent of the optical fields protruded slightly from the core
edge, as evident from the integral value of ∫0

∞e−r/δdr=δ. In practice,
the intensity of the optical fields (including the vector potential
A) would probably decrease rapidly near the edge of beam in a
complicated manner. However, even this simple intensity profile is
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