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Based on the angular spectrum representation of an arbitrary electromagnetic beam and the method of
stationary phase, an analytically vectorial structure of an apertured Laguerre–Gaussian beam in the far-field
has been derived without any approximation. The analytical expressions of the energy flux of the TE term,
the TM term, and the apertured Laguerre–Gaussian beam are also presented in the far-field, respectively. The
energy flux distributions of the TE term, the TM term, and the apertured Laguerre–Gaussian beam are
numerically demonstrated in the far-field reference plane. The influences of the f-parameter, the truncation
parameter, the radial and angular mode numbers, and the dependent relation of angle on the energy flux
distributions in the far-field of the TE term, the TM term, and the apertured Laguerre–Gaussian beam are also
discussed in detail.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The cylindrically symmetric higher-order modes of laser cavities
with spherical mirrors are Laguerre–Gaussian beams. As apertures
usually appear in the practical optical systems, the apertured
Laguerre–Gaussian beams receive considerable interest. Diffraction
of Laguerre–Gaussian beams by an aperture was early examined in
1972 [1]. The propagation and diffraction of apertured Laguerre–
Gaussian beams have been evaluated by means of the generalized
Huygens–Fresnel integral [2]. A simple analytic expression to evaluate
the far-field diffraction pattern of a general high-order Laguerre–
Gaussian beam from a circular aperture has been presented [3]. The
relative phase shift of Laguerre–Gaussian beams through an apertured
paraxial optical ABCD system has been investigated, and the
dependence of the relative phase shift on the beam and system
parameters has been numerically illustrated [4]. That the circular
aperture decreases the M2 factor of a high-order symmetrical
Laguerre–Gaussian beam and enhances its brightness has been
demonstrated [5]. Based on the complex Gaussian expansion of the
hard-edged-aperture function, approximately analytic expressions for
the output-field of standard and elegant Laguerre–Gaussian beams
through apertured fractional Hankel transform systems have been
derived [6]. The approximately analytical expressions of standard and
elegant Laguerre–Gaussian beams through an annular apertured
paraxial ABCD optical system have also been presented, respectively
[7,8]. On the basis of the truncated second-order moments method in
the cylindrical coordinate systems, closed-form expressions for the

generalized M2 factor of truncated standard and elegant Laguerre–
Gaussian beams have respectively proposed [9]. The kurtosis
parameter of standard and elegant Laguerre–Gaussian beams passing
through apertured optical systems has been calculated [10]. Based on
the relations between Laguerre–Gaussian and Hermite–Gaussian
beams, the approximately analytical propagation equations of the
rotational symmetrical Laguerre–Gaussian beams along with their
even and odd modes through a paraxial ABCD optical system with
rectangular hard-edged aperture have been derived [11]. By expand-
ing the Bessel function J0 appearing in the Fresnel–Kirchhoff integral
into a finite sum of complex Gaussian functions, an analytical
expression for a Laguerre–Gaussian beam diffracted through a hard-
edge aperture has been derived [12].

To further examine the propagation properties of an apertured
Laguerre–Gaussian beam, the vectroial structure of an apertured
Laguerre–Gaussian beam is investigated in the remainder of this
paper. Here the apertured Laguerre–Gaussian beam is described by
the angular spectrum representation of the solutions of the Maxwell's
equations. The angular spectrum representation of an arbitrary
electromagnetic beam can be uniquely expressed as a sum of the TE
and the TM terms [13–17]. The TE term denotes the electric field
transverse to the propagation axis, and the TM term means the
associated magnetic field transverse to the propagation axis. The
outcome is that an apertured Laguerre–Gaussian beam is also
decomposed into the TE and the TM terms. Many researches and
applications are conducted in the far-field. Moreover, the TE and the
TM terms are orthogonal to each other in the far-field. Bymeans of the
method of stationary phase that used in Ref. [18], therefore, the
analytical expressions of the TE and the TM terms of an apertured
Laguerre–Gaussian beam are to be presented in the far-field. The
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corresponding energy flux distributions of the TE term, the TM terms,
and the apertured Laguerre–Gaussian beam are also to be investigated
in the far-field.

2. Analytically vectorial structure in the far-field

In the Cartesian coordinate system, the Laguerre–Gaussian beam
propagates toward half free space z≥0. The z-axis is taken to be the
propagation axis. As Laguerre–Gaussian beams are usually treated to
be linearly polarized, the Laguerre–Gaussian beam in the source plane
z=0 is described by
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where w0 is the Gaussian waist, and Ln
m (.) is the associated Laguerre

polynomial. n and m are the radial and angular mode numbers. ρ0=
(ρ0, θ0),ρ0=(x02+y0

2)1/2, and θ0=tan−1(y0/x0). Here the dependence
of the Laguerre–Gaussian beam on the angle θ0 is cos(mθ0). A circular
aperture with radius R coincides with the beam waist plane of the
Laguerre–Gaussian beam. The Laguerre–Gaussian beam just behind
the circular aperture is expressed as
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where ζ=ρ0/R. circ(ζ)is the aperture function and given by

circ ζð Þ = 1 0≤ζb1
0 ζ≥1 :
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According to the vector angular spectrum representation of an
arbitrary electromagnetic beam, the propagating electric field of the
apertured Laguerre–Gaussian beam in the z-plane can be written as
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where ρ=(ρ, θ),ρ=(x2+y2)1/2,θ=tan−1(y/x),γ=(1−p2−q2)1/2,
and k=2π/λ is the wave number with λ the optical wavelength. ex
and ez are the two unit vectors in the x- and z-directions, respectively.
Ax(p, q) is the x component of the vector angular spectrum and given
by the Fourier transformation of the x component of initial electric
field

Ax p; qð Þ = 1
λ2 ∫

∞
−∞

∫∞
−∞

Ex ρ0;0ð Þ exp −ik px0 + qy0ð Þ½ �dx0dy0

=
k
λ
∫R

0

ffiffiffi
2

p
ρ0

w0

 !m

Lmn
2ρ20
w2

0

 !
exp − ρ20

w2
0

 !
Jm kρ0bð Þ cos mφð Þρ0dρ0;

ð5Þ

where Jm is themth-order Bessel function of the first kind. b=(p2+q2)1/2

and φ=tan−1(p/q). In the above integral, the following formula is used
[19]:
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According to the theorem of the vectorial structure of an
electromagnetic beam, the propagating electric field of the apertured
Laguerre–Gaussian beam can be expressed as a sum of the TE and the
TM terms [13–17]:
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with ETE(ρ,z) and ETM(ρ,z) given by
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where ey is the unit vector in the y-direction. Similarly, the
corresponding magnetic field of the apertured Laguerre–Gaussian
beamcanalsobeexpressed as a sumof theTEand theTMterms [13–17]:

H ρ; zð Þ = HTE ρ; zð Þ + HTM ρ; zð Þ; ð10Þ

with HTE(ρ,z) and HTM(ρ,z) given by
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where η=(ɛ0/μ0)1/2. ε0 and μ0 are the electric permittivity and the
magnetic permeability of vacuum, respectively. Here, the TE and TM
terms denote that the longitudinal components of the electric and
magnetic fields are equal to zero, respectively. As the divergence
condition of the electric field should be satisfied and the polarized
direction of every plane wave component must be perpendicular to its
own wave vector, the TE and TM terms of the apertured Laguerre–
Gaussian is unique.

Inserting Eq. (5) into Eq. (8), the TE term of the propagating
electric field for the apertured Laguerre–Gaussian beam yields
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with U(ρ0,ρ,z) given by
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In the far-field regime, the condition k(ρ2+z2)1/2→∞ is satisfied.
Accordingly, the method of stationary phase is applicable to the far-
field. By means of the method of stationary phase [20], Eq. (14) can be
analytically expressed as
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where r=(ρ2+z2)1/2. To obtain the analytical expression of the TE
term of the propagating electric field, themth-order Bessel function of
the first kind and the associated Laguerre polynomial should be
expanded as follows [19]:
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