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This paper predicts that bright–dark self-coupled vector solitons are possible in biased two-photon
photovoltaic photorefractive crystals under steady-state conditions. The solutions of these vector solitons
can be determined by use of simple numerical integration procedures. When the photovoltaic effect is
neglectable, these vector solitons are bright–dark vector screening solitons. When the external bias field is
absent, these vector solitons degenerate the bright–dark vector photovoltaic solitons.
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1. Introduction

Photorefractive spatial solitons (PRSS) were first observed experi-
mentally by Duree et al. [1] just a year after their theoretical prediction
by Segev et al. [2] in 1992 and have been the subject of active research
both theoretically and experimentally since then [3–24]. To date, three
different types of steady-state PRSS (screening solitons [3,4], photovol-
taic (PV) solitons [5,6] and screening photovoltaic (SP) solitons [7,8])
have beenpredicted andhave been observed experimentally.Moreover,
PRSS can be denoted as scalar solitons (one component) and vector
solitons (multi-components) according to thenumber of components of
solitons [9]. The most important prerequisite for the generation of the
vector solitons is the absence of any interference between the single
components. In general, there exist three ways to achieve the re-
quirements. The original suggestion of Manakov [10] is based on two
beamswith orthogonal states of polarization. A second approach can be
realizedbyapplying twobeamsof differentwavelength as for the case of
all quadratic solitons [11]. Finally, the vector solitons can be formed
using mutually incoherent beams which have the same polarization,
wavelength [12]. Vector screening solitons [13,14] andvector SP solitons
[15] in a biased PR crystal have been predicted, which involve the two
polarization components of an optical beam that are orthogonal to one
another. Of particular interest are bright–dark self-coupled vector
solitons. Bright–dark self-coupled vector screening solitonswhich occur
in steady-state when the intensities of the two optical beams are ap-
proximately equal [14]. Bright–dark self-coupled vector SP solitons are
possible in biased PR-PV crystals under steady-state conditions, its

analytical solutions can be obtained when the intensities of the two
optical beamsare approximately equal and these vector solitons can also
be determined by use of simple numerical integration procedureswhen
the intensities of the two optical beams make a great difference [15].

All of the above-mentioned solitons result from the single-photon
process. In 2003, a new model was introduced by Castro-Camus and
Magana [16], which involves two-photon PR effect. This model
includes a valance band (VB), a conduction band (CB) and an inter-
mediate allowed level (IL). A gating beam is used to maintain a fixed
quantity of excited electrons from the VB, which are then excited to
the CB by signal beam. The single beam induces a charge distribution
identical to its intensity distribution, which in turn gives rise to a
nonlinear change of refractive index through space charge field. At
one time, the two-photon process was observed experimentally by W
Ramadan et al. [17]. Based on this model, screening solitons [18], PV
solitons [19] and SP solitons [20] in two-photon PR crystals have been
predicted. On the other hand, incoherently coupled bright–bright,
dark–dark, bright–dark, and grey–grey soliton pairs whose carrier
beams share the same polarization, wavelength, and are mutually
incoherent have been predicted for screening solitons or PV solitons
[21–25] that result from the two-photon PR effect. In this paper, we
show that bright–dark self-coupled vector SP solitons are possible in
biased PV-PR crystals with two-photon PR effect. Moreover, the
stability of the bright–dark vector solitons is investigated numerically.

2. Theoretical model

As shown in Fig. 1, an envisaged experiment is arranged as follows.
Two collimated CW laser beams produced by two separate lasers L1 and
L2. The gating beam L1 is expanded and then sent to the crystal along
the y direction. The signal beam L2 is focused on the crystal input face
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along the z axis. Two Pockels cells, one for the gating beam and one
for the signal beam respectively, allow one to regulate the intensity and
polarization of the two beams. The beamprofiles can be detected by the
charge coupled device (CCD). The signal beam propagates in a PV-PR
crystal with two-photon PR effect and is allowed to diffract only along
the x direction. Moreover, let us assume that the external bias electric
field is also applied along x. For demonstration purposes, let the PV-PR
crystal be LiNbO3,which is illuminatedby thegatingbeam.Aspreviously
pointed out, this crystal is a good candidate for the observation of the
self-coupled or cross-coupled vector solitons [13–15]. More specifically,
for the self-coupled case, the permittivity changes in LiNbO3 along the
extraordinary and ordinary components of the optical beam are equal,
i.e., Δɛee=Δɛoo, provided that the optical c axis of the crystal makes an
angle θ≈11.9°with respect to the z axis in the xoz coordinate plane.Δɛee
and Δɛoo represent the diagonal perturbations on the relative permit-
tivity tensor. Moreover, in this case the off-diagonal elements, i.e., Δɛeo
and Δɛoe, are zero. By associating slowly varying envelopes with the
extraordinary and ordinary polarizations,φe(x, z) andφo (x, z), then one
quickly finds the following set of self-coupled nonlinear evolution
equations [14,15]:

2ike
∂ϕe

∂z +
∂2ϕe

∂x2
+ k2Δεϕe = 0 ð1aÞ

2iko
∂ϕo

∂z +
∂2ϕo

∂x2
+ k2Δεϕo = 0 ð1bÞ

where k=2π/λ and λ is the free-space wavelength of the light wave
used, and Δɛ=Δɛee=Δɛoo. The wave numbers ke and ko are defined as
ke=kn̂e and ko=kno, where n̂e and no are the refractive indices seen by
the extraordinary and ordinary components. The relative permittivity
changes Δɛee and Δɛoo can be expressed as Δεee=−reff,en̂e

4ESC and
Δεoo=−reff,on̂o

4ESC, where reff,e and reff,o are the effective electro-optic
coefficients for the extraordinary andordinary polarizations, respectively.
When the optical beam propagates in LiNbO3 along the z axis at an angle
θ=11.9° with respect to the c axis, Δɛee=Δɛoo=235.85×10−12ESC and
ESC represents the space-charge field [14]. Under strong electro-field, the
drift component will be dominant. In this case, we can neglect the
diffusion effect, thus ESC can be approximately given by [20]

ESC = gEA
I2∞ + I2dð Þ I2 + I2d + γ1NA = s2ð Þ
I2∞ + I2d + γ1NA = s2ð Þ I2 + I2dð Þ

+ Ep gI2∞−I2ð Þ s2 I2 + I2d + γ1NA = s2ð Þ
s1I1 + β1ð Þ I2 + I2dð Þ

ð2Þ

where I1is the intensity of the gating beam; I2= I2(x, z) is total power
density of the extraordinary and ordinary components, can be ob-
tained by summing the two Poynting fluxes, i.e., I2=(n̂e /2η0)|ϕe|2+

(no/2η0)|ϕo|2; g = 1
1 + pSR I2∞ + I2dð Þ, p = eω s1 I1 + β1ð Þ N−NAð Þ

WγNA I2∞ + I2d + γ1NA = s2ð Þ, where

S is the surface area of the crystal's electrodes, R is resistance, W is the
distance between the crystal's electrodes; In general,0bgb1, which
implies that only part of the bias field EA can be applied to the crystal.
For example, the short-circuit condition, R=0 and g=1, which
implies that EA can be totally applied to the crystal. For the open-circuit
condition, R→∞ then g=0, this implies that no bias field is applied to
the crystal. I2d=β2/s2 is the so-called dark irradiance, NA is the
acceptor or trap density; γ,γ1 are the recombination factor of the CB-
VB, IL-VB transition, respectively; β1 and β2 are the thermoionization
probability constant for transitions of VB-IL and IL-CB; s1 and s2 are
photoexcitation crosses; Ep=κγNA/eω is the PV field, κ, ω, and e are,
respectively, the PV constant, the electronmobility, and the charge. For
the sake of convenience, let us adopt the following dimensionless
coordinates and variables: s=x/x0, ξ=z /(k0x02),U=(2η0I2d / n̂e)−1/2ϕe

and V=(2η0I2d/no)−1/2φo. x0 is an arbitrary spatial width, and the
power densities of the optical beams have been scaled with respect to
the dark irradianceI2d. By employing these latter transformations and
by substituting expressing Eq. (2) into Eqs. (1a) and (1b), and after
appropriate normalization, we find that the normalized planar
envelopes U and V satisfy

i
n̂e
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where α=−(235.85×10−12/2)(kx0)2Ep, β=−(235.85×10−12/2)
(kx0)2EA, η = β2

s1 I1 + β1
, σ=γ1NA/β2, ρ= I2∞/ I2d. In what follows, we

will discuss the possible bright–dark vector SP soliton solutions of
Eq. (3a).

3. Bright–dark self-coupled vector solitons

To find the bright–dark self-coupled vector solitons solutions of
Eq. (3a) let us express thenormalized envelopesU andV in the following
way: U=r−1/2f(s)exp[i(n0/n̂e)μξ], V=ρ1/2q(s)exp(iνξ), where f(s)
corresponds to a bright beam envelope and q(s)to a dark one. Here we
have assumed, without and loss effects, that the extraordinary envelope
U is bright, whereas the ordinary envelope V is dark. Hence, one requires
that f(0)=1, f′(0)=0,f(s→±∞)=0,q(0)=0, and q(s→±∞)=±1,
and that all the derivatives of f(s) and q(s) vanish at infinity (s→±∞).
The positive variables r and ρ represent the ratios of their maximum
power density with respect to the dark irradiance I2d. Substitution of
these forms of U and V into Eq. (3a), we get

f ″ = 2
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Fig. 1. Anenvisaged experiment arrangement, L1 and L2 are the lasers, Pc is thePockels cell.
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