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1. Introduction

Photorefractive spatial solitons (PRSS) were first observed experi-
mentally by Duree et al. [1] just a year after their theoretical prediction
by Segev et al. [2] in 1992 and have been the subject of active research
both theoretically and experimentally since then [3-24]. To date, three
different types of steady-state PRSS (screening solitons [3,4], photovol-
taic (PV) solitons [5,6] and screening photovoltaic (SP) solitons [7,8])
have been predicted and have been observed experimentally. Moreover,
PRSS can be denoted as scalar solitons (one component) and vector
solitons (multi-components) according to the number of components of
solitons [9]. The most important prerequisite for the generation of the
vector solitons is the absence of any interference between the single
components. In general, there exist three ways to achieve the re-
quirements. The original suggestion of Manakov [10] is based on two
beams with orthogonal states of polarization. A second approach can be
realized by applying two beams of different wavelength as for the case of
all quadratic solitons [11]. Finally, the vector solitons can be formed
using mutually incoherent beams which have the same polarization,
wavelength [12]. Vector screening solitons [ 13,14] and vector SP solitons
[15] in a biased PR crystal have been predicted, which involve the two
polarization components of an optical beam that are orthogonal to one
another. Of particular interest are bright-dark self-coupled vector
solitons. Bright-dark self-coupled vector screening solitons which occur
in steady-state when the intensities of the two optical beams are ap-
proximately equal [14]. Bright-dark self-coupled vector SP solitons are
possible in biased PR-PV crystals under steady-state conditions, its
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analytical solutions can be obtained when the intensities of the two
optical beams are approximately equal and these vector solitons can also
be determined by use of simple numerical integration procedures when
the intensities of the two optical beams make a great difference [15].
All of the above-mentioned solitons result from the single-photon
process. In 2003, a new model was introduced by Castro-Camus and
Magana [16], which involves two-photon PR effect. This model
includes a valance band (VB), a conduction band (CB) and an inter-
mediate allowed level (IL). A gating beam is used to maintain a fixed
quantity of excited electrons from the VB, which are then excited to
the CB by signal beam. The single beam induces a charge distribution
identical to its intensity distribution, which in turn gives rise to a
nonlinear change of refractive index through space charge field. At
one time, the two-photon process was observed experimentally by W
Ramadan et al. [17]. Based on this model, screening solitons [18], PV
solitons [19] and SP solitons [20] in two-photon PR crystals have been
predicted. On the other hand, incoherently coupled bright-bright,
dark-dark, bright-dark, and grey-grey soliton pairs whose carrier
beams share the same polarization, wavelength, and are mutually
incoherent have been predicted for screening solitons or PV solitons
[21-25] that result from the two-photon PR effect. In this paper, we
show that bright-dark self-coupled vector SP solitons are possible in
biased PV-PR crystals with two-photon PR effect. Moreover, the
stability of the bright-dark vector solitons is investigated numerically.

2. Theoretical model

As shown in Fig. 1, an envisaged experiment is arranged as follows.
Two collimated CW laser beams produced by two separate lasers L1 and
[2. The gating beam L1 is expanded and then sent to the crystal along
the y direction. The signal beam L2 is focused on the crystal input face
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Fig. 1. An envisaged experiment arrangement, L1 and L2 are the lasers, Pcis the Pockels cell.

along the z axis. Two Pockels cells, one for the gating beam and one
for the signal beam respectively, allow one to regulate the intensity and
polarization of the two beams. The beam profiles can be detected by the
charge coupled device (CCD). The signal beam propagates in a PV-PR
crystal with two-photon PR effect and is allowed to diffract only along
the x direction. Moreover, let us assume that the external bias electric
field is also applied along x. For demonstration purposes, let the PV-PR
crystal be LiNbOs, which is illuminated by the gating beam. As previously
pointed out, this crystal is a good candidate for the observation of the
self-coupled or cross-coupled vector solitons [ 13-15]. More specifically,
for the self-coupled case, the permittivity changes in LiNbO5 along the
extraordinary and ordinary components of the optical beam are equal,
i.e., Aeee = Acy,, provided that the optical c axis of the crystal makes an
angle 6~ 11.9° with respect to the z axis in the xoz coordinate plane. Ag,,
and Ae,, represent the diagonal perturbations on the relative permit-
tivity tensor. Moreover, in this case the off-diagonal elements, i.e., Aeg,
and Ae,., are zero. By associating slowly varying envelopes with the
extraordinary and ordinary polarizations, ©.(x, z) and ¢, (x, z), then one
quickly finds the following set of self-coupled nonlinear evolution
equations [14,15]:

. ad)e azd)e 2 _

21ke§ + e + k“Agp, =0 (1a)
: ad)o 62(')0 2 —

zlkoy + aXZ + k Ag(bo =0 (lb)

where k=2m/A and A is the free-space wavelength of the light wave
used, and Ae = Ae,. = Ag,,. The wave numbers k, and k, are defined as
ke = ki, and k, = kn,, where 7}, and n, are the refractive indices seen by
the extraordinary and ordinary components. The relative permittivity
changes Ae.. and Ae,, can be expressed as Ag,e= — reﬁgeﬁg‘Egc and
Agyo= freffoﬁﬁ,‘Esc, where 7o and reg, are the effective electro-optic
coefficients for the extraordinary and ordinary polarizations, respectively.
When the optical beam propagates in LiNbOs along the z axis at an angle
6=11.9° with respect to the ¢ axis, Acee = Acgo = 235.85x 10~ ?Esc and
Esc represents the space-charge field [14]. Under strong electro-field, the
drift component will be dominant. In this case, we can neglect the
diffusion effect, thus Esc can be approximately given by [20]
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where L is the intensity of the gating beam; I, =1,(x, z) is total power
density of the extraordinary and ordinary components, can be ob-
tained by summing the two Poynting fluxes, i.e., I, = (fi./210)|d¢|* +
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S is the surface area of the crystal's electrodes, R is resistance, W is the
distance between the crystal's electrodes; In general,0<g<1, which
implies that only part of the bias field E4 can be applied to the crystal.
For example, the short-circuit condition, R=0 and g=1, which
implies that E4 can be totally applied to the crystal. For the open-circuit
condition, R— « then g =0, this implies that no bias field is applied to
the crystal. IL,y=[3,/s, is the so-called dark irradiance, N, is the
acceptor or trap density; y,y; are the recombination factor of the CB-
VB, IL-VB transition, respectively; 3; and (3, are the thermoionization
probability constant for transitions of VB-IL and IL-CB; s; and s, are
photoexcitation crosses; E,=KyN,/ew is the PV field, x, o, and e are,
respectively, the PV constant, the electron mobility, and the charge. For
the sake of convenience, let us adopt the following dimensionless
coordinates and variables: s = x/xo, §=z/ (koX3), U= (210l24/ ) ™ e
and V= (2nohq/n,)~ ""2@,. xo is an arbitrary spatial width, and the
power densities of the optical beams have been scaled with respect to
the dark irradiancel,4. By employing these latter transformations and
by substituting expressing Eq. (2) into Egs. (1a) and (1b), and after
appropriate normalization, we find that the normalized planar
envelopes U and V satisfy
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where a= —(235.85x 107 '%/2)(kx)’E,, 5= —(235.85x10"'%/2)
(kxo)?Ea, M = 5111[)’—1;,)1 0="7Y1Na/B2, P =l/lr. In what follows, we
will discuss the possible bright-dark vector SP soliton solutions of
Eq. (3a).

3. Bright-dark self-coupled vector solitons

To find the bright-dark self-coupled vector solitons solutions of
Eq. (3a) let us express the normalized envelopes U and Vin the following
way: U=r""?f(s)expli(no/fie)ug], V=p'"?q(s)exp (iv€), where f(s)
corresponds to a bright beam envelope and q(s)to a dark one. Here we
have assumed, without and loss effects, that the extraordinary envelope
Uis bright, whereas the ordinary envelope V is dark. Hence, one requires
that f{0)=1,f(0)=0,(s > +%*)=0,4(0)=0, and q(s— +«)=4+1,
and that all the derivatives of f(s) and q(s) vanish at infinity (s — &+ ).
The positive variables r and p represent the ratios of their maximum
power density with respect to the dark irradiance I,4. Substitution of
these forms of U and V into Eq. (3a), we get
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