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Influence of transverse and longitudinal phase matching on the spectral and intensity properties of third
harmonic generation induced by the Bessel pump beams has been investigated both theoretically and
experimentally. Transverse phase matching, revealing itself as a ring pattern in the third harmonic intensity
angular spectrum was demonstrated in both the normally and anomalously dispersive media. The conditions
were found for the optimization of this conical third harmonic signal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Third harmonic generation (THG) is an important and well-
established technique that can up-convert the coherent output of the
laser sources to shorter wavelengths in the visible, UV and VUV
spectral regions. However, for themaximum conversion efficiency the
process has to be phase matched, i.e., the phase velocities of the
fundamental and generated third harmonic waves should be equal.
Phase matching in gaseous media can be achieved either by using the
mixtures of gasses, or by properly selecting the frequencies of
interacting waves [1,2], therefore, it restricts the choice of nonlinear
media in which radiation of desired wavelength can be generated.
Laser frequency tripling can also be accomplished through the use of
higher- order optical nonlinearities [3,4], but in this case the energy
conversion efficiency so far has not exceeded 10−5.

The alternative approach is the excitation of nonlinear isotropic
media by Bessel pump beams, characterized by specific optical
properties [5,6] and allowing different phase matching techniques to
be applied. Thus, several reports demonstrating advantages of THG
induced by the Bessel pump beams have been published [7–11].
Moreover, it has been shown [12] that the ring-shaped pump beam is
capable to provide the self-organized phase matching (SPM) of THG
for a wide range of nonlinear media parameters, and thus, can be
used for the efficient frequency tripling of broadband and ultrashort
laser pulses. Compared to the plane-wave phase matching the SPM

provides a high degree of tolerance in the fluctuations of refraction
index and pump intensity, but it can take place only in themediawith
anomalous dispersion of refraction index, i. e., when phasemismatch
Δk between the wave vectors of generated radiation and pump is
negative (Δk=k3−3k1b 0, where k1 and k3 are the fundamental and
third harmonic wave vectors, respectively). A more detailed
theoretical analysis [13,14] has shown that the power of THG
induced by Bessel beams depends mainly on two factors: first, on
the longitudinal phase matching (LPM) term, and, second, on the
transverse phase matching (TPM). However, the influence of TPM
and LPM on the spatial spectra of THG induced by the Bessel beams
has not been investigated in detail, especially in the case of normally
dispersive nonlinear media, i.e., when the longitudinal phase
matching condition cannot be satisfied. Therefore, in this paper we
provide the comparison of theoretical and experimental results
demonstrating conical TH signal generated in both the normally and
anomalously dispersive media.

2. Theoretical background

Here we present an analytical consideration of the third harmonic
generation in sodium vapor excited by the Bessel beam. In a paraxial
approximation the variation of third harmonic amplitude A3 with
propagation in nonlinear isotropic medium at low conversion
efficiency can be described by equation
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here z and r are the longitudinal and radial coordinates respectively,
σ is the coupling coefficient. As a boundary condition of the Eq. (1) at
z=0we take the amplitude A1(r) of the fundamental wave described
as an apertured zeroth-order Bessel–Gauss beam

A1 rð Þ = a0 J0 k1r sin θ1ð Þexp −r2=d2
� �

; ð2Þ

where θ1 is a half-cone of the Bessel beam and d is the radius of the
Bessel–Gauss beam profile, i.e., the radius of the Gaussian function
which suppress the Bessel beam oscillations in space. In a direction of
propagation the phase mismatch Δz for the Bessel beam can be
written as

Δz = k3−3k1cosθ1; ð3Þ

where k3=3ωn3/c and k1=ωn1/c stand for the wave vectors of the
third and fundamental harmonics, respectively. In the paraxial
approximation Eq. (3) takes a form

Δz =
3π
λ1

2Δn + θ21
� �

; ð4Þ

where λ1 is awavelength of the fundamental beam, andΔn=n3−n1.
A two dimensional Fourier transformation of the Eq. (1) yields
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here S3(θ3,z) denotes an amplitude of the TH angular spectrum.
Eq. (5) can be easily solved, and, as a result, an intensity of angular
spectrum of the third harmonic I3(θ3)=|S3(θ3)|2 is given by

I3 = S20
l
Ln

� �2
T2 θ3ð Þsinc2 δl=2ð Þ; ð6Þ

here S0=a0/(k1θ1)2, l is a propagation distance in the nonlinear
medium, Ln=1/(σa02) is the nonlinear length,

T θ3ð Þ = ∫
∞

0
e−3ξ2 =m2

J30 ξð Þ J0 3ξ θ3 =θ1ð Þ ξdξ ð7Þ

is a transverse phase-matching integral at n1≈n3,m=k1θ1d≫1, and

δ = Δz−
k3
2
θ23 =
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: ð8Þ

The dependence of T(θ3) is presented in Fig. 1. The transverse
phase-matching integral depends on the overlap of the fundamental
and third harmonic beams. It clearly peaks at θ3/θ1=1/3, and in this
case the simultaneous longitudinal phase-matching (δ=0) is possible
at 2Δn+θ12=θ32 [12].

Further we analyze THG in a low pressure sodium vapor for the
two wavelengths of the fundamental beam (1.62 and 1.86 μm, which
correspond to the anomalously and normally dispersive media,
respectively).

The refraction indices of the fundamental and third harmonic
waves can be calculated approximately by using the relation [15]:

n = 1 +
4:3694⋅10−6N
2:8796−1= λ2 ; ð9Þ

where N is a density of sodium vapor taken in 1016 cm−3. In the
further calculations we take N=0.3 and θ1=7.25⋅10−3. Note, that
for the typical experimental conditions (pump peak intensity of up to
20 GW/cm2) the change of the refraction index due to the Kerr effect
is negligible (δnb10−9 for χ(3)(ω)≈10−33 (esu) [15]).

2.1. Anomalously dispersive medium

For λ1=1.62μm we obtain Δn=n3−n1=−2.91⋅10−6. In this
case the longitudinal phase-matching (δ=0) is possible for the third

harmonic cone with an angle θ3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21−2 jΔn j

q
≈ 0:94θ1. The third

harmonic generation at a cone angle θ3=θ1/3 takes place at some
phase-mismatch with a fundamental wave, and for this process the
coherence length is

Lcoh θ1 =3ð Þ= π
δ
=

λ1

3 8=9 θ21−2 jΔn j� � ≈13:2 mm: ð10Þ

The normalized angular spectrum of third harmonic intensity
I3n= I3Ln

2/S02 is presented in Fig. 2. The spectrum consists of two rings
with the angles θ3≈θ1 and θ3≈θ1/3. The intensity ratio ηa of these
two rings is

ηa =
I3 θ1 = 3ð Þ
I3 θ1ð Þ =

4
π2

L2coh θ1 = 3ð Þ
l2

T2 θ1 = 3ð Þ
T2 θ1ð Þ : ð11Þ

As a result, the ring with an angle θ3=θ1/3 generated at a phase-
mismatch should be detected simultaneously with the ring θ3≈θ1 if
the nonlinear medium length is approximately equal to the uneven
number of the coherent length Lcoh(θ1/3).

2.2. Normally dispersive medium

For λ1=1.86μm we obtain Δn=4.23⋅10−6. In this case the
generation of two third harmonic rings with the angles θ3≈θ1 and
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Fig. 1. Transverse phase matching integral, m=100.
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Fig. 2. Angular spectrum of the third harmonic intensity excited in sodium vapor at
λ1=1.62μm. Anomalously dispersive medium, l=11Lcoh(θ1/3).
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