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The giant enhancement of Kerr nonlinearity in a four-level inverted-Y atomic system is investigated
theoretically. Compared with that generated in a generic three-level system, the Kerr nonlinearity can be
enhanced by several orders of magnitude with vanishing linear absorption. The physical mechanism leading
to the giant enhancement of Kerr nonlinearity is also discussed.
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1. Introduction

One of the most intriguing phenomenon in atom-light interactions
is represented by electromagnetically induced transparency (EIT) [1–
3]. Its potential applications range from lasing without inversion
(LWI) [4–8] and controlled group velocity [9–11] to enhanced
nonlinear optics [12]. The generic EIT consists of three-level atoms,
then people extended their interest to multi-level atomic systems.
Recently the enhancement of third-order Kerr nonlinearity with
reduced absorption in multi-level atomic systems have attracted
much interest because of its applications in nonlinear and quantum
optics [13–23]. Schmidt and Imamoglu investigated the giant Kerr
nonlinearity with vanishing absorption in a four-level N-configuration
system in which the ideal EIT regime is disturbed by introducing an
additional off-resonant level [13]. A quasi-three-level scheme is
proposed to enhance the third-order nonlinearity with vanishing
absorption [15]. Joshi and Xiao studied a four-level inverted-Y atomic
system, and they found that the cross-Kerr nonlinearity in such a
system could produce a phase shift of order π and might be used for
realizing polarization quantum phase gates [17]. Niu et al. investigat-
ed the possibility of giant enhancement of the Kerr nonlinearity in the
double-dark-resonance atomic system, they showed that the inter-
acting double-dark resonances give rise to an order of magnitude
increase of the Kerr nonlinearity [18]. Recently the giant cross-Kerr
nonlinearity was studied in carbon nanotube quantumdots with spin-
orbit coupling [23].

In this paper, motivated by the work [17], we investigate the Kerr
nonlinearity in self-phase modulation (SPM) in a four-level inverted-

Y atomic system. As pointed in Ref. [17], the inverted-Y system can
provide large cross-Kerr effect between the probe and signal fields,
and is very straightforward to implement in a scheme involving
hyperfine levels of 87Rb atoms [24]. The large cross-phase modulation
(XPM) can be used for quantum phase gate [25], all-optical switching
[26], deterministic optical quantum computation [27] and so on. Here
we notice that another third-order nonlinearity effect, i.e., the Kerr
nonlinearity in SPM is not discussed in the scheme. Because the Kerr
nonlinearity in SPM can be used for generation of optical solitons
[28,29] and so on, it is significative to investigate the Kerr nonlinearity
in SPM in the inverted-Y system. In this atomic system, we show that
the Kerr nonlinearity can be enhanced by several orders of magnitude
with vanishing absorption within the right transparency window by
modulating the intensity and the detuning of the coherent-control
field. In addition, we also discuss the physical mechanism leading to
the giant enhancement of Kerr nonlinearity.

2. Model and equations

The atomic-level scheme considered here is the same as that in Ref.
[17] and is shown in Fig. 1. A weak-probe field Ep with Rabi frequency
g = →Ep⋅

→d21
� �

= 2ħwhose central frequencyωp is close to the frequency
of the atomic transition |1〉↔ |2〉. The transition |0〉↔ |2〉 interacts with
a strong coupling field (frequency ωs) having Rabi frequency
Ω = →Es⋅→d20

� �
= 2ħ, and a coherent-control field (frequency ωc) with

Rabi frequency G = →Ec⋅→d32
� �

= 2ħ is applied to the transition |2〉↔ |3〉.
The higher excited state |3〉 decays with a rate 2γ3 to the lower excited
state |2〉 which decays to the ground state |1〉 with a rate 2γ2, and 2γ1

denotes the population relaxation decay rate from |2〉 to |0〉. Here the
lower three levels formaΛ-type configuration, and the levels |1〉, |2〉 and
|3〉 form a ladder-type system.
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Under the rotating-wave approximation, the density matrix equa-
tion of motion can be written as

ρ̇00 = 2γ1ρ22−2γ0ρ00 + iΩ ρ02−ρ20ð Þ;
ρ̇11 = 2γ2ρ22 + 2γ0ρ00 + ig ρ12−ρ21ð Þ;
ρ̇33 = −2γ3ρ33−iG ρ23−ρ32ð Þ;
ρ̇10 = − γ0−i Δ1−Δ0ð Þ½ �ρ10 + iΩρ12−igρ20;
ρ̇02 = − γ1 + γ2−iΔ0ð Þρ02 + igρ01 + iGρ03 + Ω ρ00−ρ22ð Þ;
ρ̇03 = − γ0 + γ3−i Δ0 + Δ2ð Þ½ �ρ03 + iGρ02−iΩρ23;
ρ̇23 = − γ1 + γ2 + γ3−iΔ2ð Þρ23−igρ13−iΩρ03 + iG ρ22−ρ33ð Þ;
ρ̇12 = − γ1 + γ2−iΔ1ð Þρ12 + iΩρ10 + iGρ13 + ig ρ11−ρ33ð Þ;
ρ̇13 = − γ3−i Δ1 + Δ2ð Þ½ �ρ13 + iGρ12−igρ23;

ð1Þ

the above equations are constrained by ∑ iρii=1 and ρij=ρji* ,
(i, j=0,1,2,3, and i≠ j), 2γ0 is related to the nonradiative relaxation
rate of state |0〉, and Δ0,Δ1, and Δ2 are the detunings of the coupling,
the probe and the coherent-control fields respectively.

3. Results and discussions

It is known that the response of the atomic medium to the probe
field is governed by its polarization P=ε0(Epχ+Ep*χ*) /2, where χ is
the susceptibility of the atomic medium. By performing a quantum
average of the dipole moment over an ensemble of N atoms, P=N
(μ21ρ12+μ12ρ21). To derive the equations for the linear and nonlinear
susceptibilities, we need to give the steady state solutions for the
density matrix Eq. (1). In the present approach, an iterative method is
used to achieve increasingly accurate approximations to the matrix
elements[16,18,20]. The density matrix elements can be written as
ρmn=ρmn

(0)+ρmn
(1)+ρmn

(2)+ρmn
(3)+⋯, where each successive approxima-

tion is calculated using the matrix elements of one order less than the
one being calculated. Under the condition that the probe field is very
small as compared with those of the coupling and the coherent-
control fields, the zeroth-order solution will be ρ11(0)=1 and other
elements are equal to zero. Under the weak-probe approximation, we
can get the matrix elements in the first order. For simplicity, we set
γ1=γ2=γ3=γ and Δ0=Δ2=0 during calculation.

ρ 1ð Þ
21 =

gfΩ Δ1−ið Þρ 0ð Þ
02 + Δ1 Gρ 0ð Þ

32 + Δ1−ið Þ ρ 0ð Þ
11−ρ 0ð Þ

22

� �h ig
Ω2 Δ1−ið Þ + Δ1 2 + G2−Δ2

1 + 3iΔ1
� �

= − gΔ1

Q f−Ω2 1 + Δ2
1

� �
+ Δ1 G2 i−Δ1ð Þ + 2i + Δ1ð Þ 1 + Δ2

1

� �h ig;
ð2Þ

ρ 1ð Þ
10 = − gΩ

Q fΩ2 1 + Δ2
1

� �
+ Δ1 G2 i + Δ1ð Þ + 2i−Δ1ð Þ 1 + Δ2

1

� �h ig;
ð3Þ

ρ 1ð Þ
13 =

ΩGΔ1

Q
Ω2 i−Δ1ð Þ + Δ1 Δ2

1−2−G2−3iΔ1

� �h i
: ð4Þ

Here all parameters are reduced to dimensionless ones by scaling
with γ. To obtain the third-order in ρ21 we need to know ρ02, ρ32 and
ρ11−ρ22 to the second order:

ρ 2ð Þ
02 = g

ρ 1ð Þ
12−ρ 1ð Þ

21
2Ω

+
ΩG ρ 1ð Þ

13−ρ 1ð Þ
31

� �
+ 3 + Ω2

� �
ρ 1ð Þ
10−ρ 1ð Þ

01

� �

2i 6 + 2Ω2 + 3G2
� �

2
4

3
5; ð5Þ

ρ 2ð Þ
32 = g½ i ρ 1ð Þ

13 + ρ 1ð Þ
31

� �
−2G ρ 1ð Þ

12−ρ 1ð Þ
21

� �

2 3 + Ω2 + G2� �

+
2 + G2

� �
ρ 1ð Þ
13−ρ 1ð Þ

31

� �
+ ΩG ρ 1ð Þ

10−ρ 1ð Þ
01

� �

2i 6 + 2Ω2 + 3G2
� � �; ð6Þ

ρ 2ð Þ
11−ρ 2ð Þ

22 = − g
2iΩ2 2 + 3Ω2 + G2

� �
ρ 1ð Þ
12−ρ 1ð Þ

21

� �
−iΩ ρ 1ð Þ

10 + ρ 1ð Þ
01

� �h i
:

ð7Þ

With the above procedure, the linear absorption and the refractive
part of the third-order susceptibility can be written as

Im χ 1ð Þh i
=

2N jμ21 j2
ħε0Q

Δ2
1 2 + G2 + 2Δ2

1

� �h i
; ð8Þ

Re χ 3ð Þh i
=

2N jμ21 j4
3ħ3ε0g

3 ðAIm ρ 1ð Þ
21

h i
+ BIm ρ 1ð Þ

01

h i
+ CRe ρ 1ð Þ

01

h i

+ DIm ρ 1ð Þ
31

h i
+ FRe ρ 1ð Þ

31

h iÞ; ð9Þ

where

Q = Ω4 1 + Δ4
1

� �
−2Ω2Δ2

1 1−G2 + Δ2
1

� �

+ Δ2
1 4 + G4 + 5Δ2

1 + Δ4
1−2G2 Δ2

1−2
� �h i

;

A = −g2 6 + 2Ω2 + 3G2
� �

Δ1f 6 + 5G2 + G4
� �

Δ2
1 G2−1−Δ2

1

� �

+ 3Ω6 1 + Δ2
1

� �
+ Ω2Δ2

1 5G4−4G2 Δ2
1−4

� �
−11 1 + Δ2

1

� �h i

+ Ω4 9+6Δ2
1−3Δ4

1 +G2 1+7Δ2
1

� �h ig=Ω2½2Ω4+Ω2 12+5G2
� �

+ 3 6 + 5G2 + G4
� ��fΩ4 1 + Δ2

1

� �
−2Ω2Δ2

1 1−G2 + Δ2
1

� �

+ Δ2
1 4 + G4 + 5Δ2

1 + Δ4
1−2G2 Δ2

1−2
� �h ig; ð10Þ

B = g2ΩfΩ4 1 + Δ4
1

� �
+ Ω2 3 + 2 1 + G2

� �
Δ2

1−Δ4
1

h i

+ Δ2
1 G4−G2 Δ2

1−5
� �

−3 1 + Δ2
1

� �h ig = f2Ω6 1 + Δ2
1

� �

+ 2Ω2Δ2
1 4G4−2−Δ2

1 + Δ4
1 + G2 7−5Δ2

1

� �h i

+ 3 2 + G2
� �

Δ2
1 4 + G4 + 5Δ2

1 + Δ4
1−2G2 Δ2

1−2
� �h i

+ Ω4 6 + 2Δ2
1−4Δ4

1 + G2 3 + 7Δ2
1

� �h ig; ð11Þ

Fig. 1. Schematic diagram of the four-level inverted-Y system considered.
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