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a b s t r a c t

With the ultimate aim of exploiting the self-focusing behaviour to create periodic structures, we have
investigated the behaviour of Bessel–Gauss beams in Kerr-like nonlinear media and have identified that
a previously proposed nonlinear beat length is inaccurate with increasing power. By studying the behav-
iour of the beam we suggest a correction; providing a much better description of the beat length. This
correction is tested against results from numerical simulations confirming the improved accuracy. Within
the, scalar, nonparaxial limit we show that this modified beat length is valid for beam powers surpassing
the paraxial self-focusing threshold. From this modified beat length equation, the appropriate experi-
mental variables may be chosen to create accurate periodic structures by direct laser writing in a single
exposure.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The integration of optical designs by direct laser writing within
materials such as heavy metal oxide (HMO) glass is often plagued
by nonlinear beam reshaping due to Kerr-like self focusing [1]. This
is particularly striking in the case of Gaussian beams where one
can observe a significant variation in effective focal depth with
beam power. By numerically studying the propagation of Bessel–
Gauss beams we report on their potential application for writing
periodic structures in a single shot, exploiting the natural self-
focusing effect to our advantage.

As previously reported [2] a Bessel–Gauss beam propagating in
a Kerr-like nonlinear medium exhibits periodic modulation of the
axial field intensity along the optical axis. As the power is in-
creased the modulation depth grows, permitting the central lobe
intensity to periodically exceed the threshold for material modifi-
cation without adverse effects on the beam as a whole. This could
enable periodic structures to be built in a single exposure, using
optics with a far lower numerical aperture than required to build
the structure point by point. Combining this with raster scanning;
volume Bragg-like structures, similar to those described in [3],
could be formed.

As yet, one problem remains unanswered. As the beam power is
increased not only does the modulation deepen, its associated beat

length increasingly begins to deviate from the low power limit
shown in [2] coupling together the power of the beam and the per-
iod of any generated structure. Although the variation of beat
length with power is clearly observable in previous numerical re-
sults [2] it does not appear to have received significant attention.
Accounting for this variation with increasing power would allow
accurate control of the size and separation of these structures.

2. Bessel beams

The Bessel beam is a well known exact, diffraction free solution
to the scalar, linear, isotropic and homogeneous Helmholtz wave
equation. In a linear medium these propagate as

Aðr; zÞ ¼ J0ðkrrÞ expðikzzÞ; ð1Þ

where kr and kz are the radial and longitudinal wavenumbers
respectively and a time convention of expð�ixtÞ has been as-
sumed. The construction of a Bessel beam may be considered as
the summation of an infinite set of plane waves with their optical
axes aligned on the surface of a cone. The inner cone angle, h, de-
notes the angle any one of these plane waves makes with the prin-
ciple optical axis of the beam. One such plane wave is shown in
Fig. 1. The longitudinal and transverse wavenumbers are related
by

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

r

q
¼ k cos h: ð2Þ
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In the paraxial limit this reduces to

kz ¼ k� k2
r =ð2kÞ: ð3Þ

Such Bessel beams are unphysical as the power is technically
unbounded. A commonly used physical approximation is the Bes-
sel–Gauss beam. Here a Gaussian envelope is used to ensure the
beam is of finite power. Using this Gaussian window comes at a
cost; the Bessel–Gauss beam is no longer diffraction free. By con-
sidering the shadow cast by the windowing function we may write
this diffraction-free length as

zBD ¼
w0

tan h
; ð4Þ

where w0 is the 1=e radius of the Gaussian window.

3. Numerical model

The propagation of the, potentially large cone angle, scalar
beam in a Kerr-like medium may be described by the nonparaxial,
nonlinear, Schrödinger equation (NNSE):

j
o2u
o~z2 þ i

ou
o~z
þr2

?uþ juj2u ¼ 0; ð5Þ

wherer2
? is the transverse Laplacian, the form of which depends on

the coordinate system. A scaling has been introduced appropriate to
a Bessel–Gauss beam such that ~r ¼ rkr , ~z ¼ z=LD and LD ¼ 2k=k2

r is
the Rayleigh length of the isolated central Bessel lobe [4]. The con-
stant j ¼ ðkr=kÞ�2 is a measure of the nonparaxiality of the beam.
Finally, the field is scaled as uð~r;~zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn2=n0Ld

p
Að~r;~zÞ where

Að~r;~zÞ is the unscaled field and the forward phase expðikzÞ has been
factored out.

To recover the nonlinear Schrödinger equation (NSE) from Eq.
(5) we must neglect the first term. Commonly, this is achieved
by assuming the slowly varying envelope approximation (SVEA).
It is worth remembering that we do not need the explicit condition
that j! 0 for the NSE to be valid. We may model beams with
modest nonparaxiality providing that we do not inadvertently vio-
late the slowly varying envelope approximation.

For weak nonlinearity we do not expect the numerical results
derived with the NNSE to manifestly differ from those derived from
the NSE. By construction, providing the forward phase has been
factored out, the Bessel–Gauss beam varies slowly with respect
to ~z, this holds true for small amounts of nonlinearity.

As the nonlinear influence on the beam increases, with increas-
ing power, the self focusing begins to dominate the behaviour of
the beam. As this occurs the beam is clearly no longer varying
slowly and consequently the SVEA is violated. Above a threshold
power; catastrophic self focusing is predicted by the NSE [5]. It is
know that the full nonlinear scalar Helmholtz or NNSE do not per-
mit such catastrophic self focusing [6]. We test our assumptions for
the beat length using both the NNSE and the NSE.

Applying the above scaling to the inner cone angle, h in Fig. 1
gives the relation:

sin h ¼ k~r

ffiffiffiffiffiffiffi
2j
p

; ð6Þ

from which the usual small angle approximations can be taken.
Clearly, including the first term in Eq. (5) places a constraint on

the relationship between k and kr . Any solution obtained from the
NNSE will be valid only for this value of j and the associated inner
cone angle, h. If, however, this term is neglected; any solution ob-
tained by the NSE will be valid for any combination of k and kr . Put
plainly, solutions obtained from the NSE, for a particular scaled
transverse spatial frequency k~r , will be valid for any inner cone an-
gle h. This is provided, of course, that we do not inadvertently vio-
late the SVEA.

As the Bessel beam field evolves in a Kerr-like nonlinear med-
ium; the nonlinear interaction, which can be thought of as degen-
erate four wave mixing [2] or alternatively self-diffraction [4],
generates a field propagating predominantly along the optical axis.
From trivial geometrical arguments the interference between this
new field and the Bessel beam, shown as Dkz on Fig. 1, leads to a
beat length:

z0
b ¼

2p
k� kz

: ð7Þ

Fig. 2a shows the field intensity distribution as this plane wave
beats with a linear Bessel–Gauss beam. This we shall consider our
linear approximation.

4. Numerical simulation

The assumptions made above were tested by modelling the Bes-
sel–Gauss beams with the Hankel-based Adaptive Radial Propaga-
tor (HARP). The Hankel transforms were implemented using the
quasi discrete Hankel transform [7]. A symmetrised split step oper-
ator was used for the paraxial results and a finite difference oper-
ator, based on the NNSE, was used for the nonparaxial results [8].
The nonparaxial results were obtained for an inner cone angle of
h ¼ 30�, corresponding to a central lobe FWHM of 0:36k.

The numerical results in Fig. 2b shows the intensity distribution
for slices across the beam path. The modulation of the Bessel–
Gauss beam is clearly present. By comparing these numerical re-
sults with the linear approximation, Fig. 2a several deficiencies in
the linear approximation are apparent. Energy is concentrated near
the axis in the nonlinear numerical case to a far greater extent than
the trivial linear case of Fig. 2a. In addition the modulation length
varies, reducing for lobes closer to the central point. For the central
lobe this is pronounced; eight periods in Fig. 2b as opposed to six in
Fig. 2a. If this intensity modulation were to be used for writing
periodic structure such unpredictable control over the spacing
the points would be unacceptable; a correction to this beat length
is required.

5. Power dependent beat length

Two features are not taken into account in the linear approxi-
mation. The first deficiency arises because we have incorrectly as-
sumed that the generated field has the form of a plane wave,
whereas it is Gaussian-like [2]. This accounts for the concentration
of power towards the central lobes. Additionally we have neglected
to take into account the Kerr-induced phase retardation on the
generated field. This increases the optical path for the generated
field resulting in a reduction in the modulation length which scales
as average intensity.

We propose a new nonlinear beat length based on a correction
to Eq. (7) [2]:

Fig. 1. Representation in k-space.
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