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We propose two optical schemes for implementing the deterministic single-particle and two-particle quantum
dense coding using four-qubit cluster states. In the protocols, the photon is neuter particle, so it has longer
decoherence time with the environment than other particles. It is easy to implement single-bit gate using the
linearoptical elements under certain conditions, so the transformations performedon thephotons byAlice canbe
easily achieved. Here the cluster states can be exactly discriminated using the parity detector, PBS and FS-PBS. In
addition, the success probabilities of the dense coding are both equal to 1.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement shared by more than two parties is
essential, since it plays a significant role in the development of
quantum communication networks and quantum computation.
Quantum dense coding is one of the important applications of
quantum entanglement and it allows two classical bits of information
to be transmitted by sending only one quantum bit [1]. It has been
experimentally demonstrated in both discrete and continuous
quantum variable regimes [2–5]. Applying multipartite entangle-
ment and dense coding on quantum communication networks we
can transmit more classical information through passing on less
quantum resource, so much more attention has been paid to
quantum dense coding. Some theoretical schemes for quantum
dense coding have been proposed [6–9] by using GHZ state and
nonmaximally two-particle entangled states. Recently, some
schemes were proposed to implement quantum dense coding with
two three-level atoms via cavity QED [10,11]. In experiment,
quantum dense coding has been implemented on individual atomic
qubits with the use of two trapped 9Be+ ions [12]. As one of the
possible candidates for engineering quantum entanglement, the
optical systems always attract much attention [13–15]. This is due to
the fact that photons are not only travelling fast and easy to operate,
but also uneasy to interact with environment in the transmission
process. Mozes et al. first initiated the discussion of deterministic

dense coding [16] using both numerical and analytical methods.
Later someone give a mathematical proof [17] of the interesting
phenomena mentioned in Ref. [16]. In 1996 K. Mattle et al. [2] had
reported the realization of a quantum dense coding using polariza-
tion entangled photons. However, reliably resolving all four Bell
states using linear optics alone is impossible [18], strong nonlinear
interactions are needed. Recently, Schuck et al. demonstrated new
possibilities of complete Bell measurement and realized an optimal
dense coding protocol [19].

In this paper, we propose two schemes to implement the single-
particle and two-particle quantum dense codings using four-qubit
cluster states in optical systems. In the protocols, Alice sent her photon
(s) to Bob after coding on it (them) by linear optical elements. The four
(eight) states are completely discriminated by employing quantum
nondemolition detectors (QND) parity detectors, PBS and FS-PBS
when Bob received Alice's photon(s). According to the outcome of the
measurement Bob can distinguish Alice's operations on her photon(s),
and he can obtain the two (three) bits of classical information. The
QND devices are generally based on cross-Kerr nonlinearities, and the
cross-Kerr nonlinearities have become available with electromagnet-
ically induced transparency (EIT) [20]. The photons are neuter
particles, so they have longer decoherence timewith the environment
than other particles. In an experiment, it is easy to implement a single-
bit gate using the linear optical elements. The cluster states can be
exactly discriminated and the success probabilities are both equal to 1.

The paper is organized as follows. In Sec. 2, we show the scheme
to implement single-photon quantum dense coding using cluster
state in optical system. In Sec. 3, we present an experimentally
feasible scheme to implement the two-photon quantum dense
coding using cluster state in optical system. The paper ends with a
conclusion.
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2. Scheme to implement single-photon quantum dense coding
using cluster state

The scheme for generating the four-particle cluster states had been
proposed [21] by using two single-photon states and one two-photon
polarization entangled state as input resources. The photonic qubit |0〉
and |1〉 are represented by horizontal |H〉 and vertical |V〉 polarizations
in our scheme. We suppose that the four-photon cluster state is given
by

jψ〉þ =
1
2
½ jH〉1 jH〉2 jH〉3 jH〉4 + jH〉1 jH〉2 jV〉3 jV〉4ð Þ

+ jV〉1 jV〉2 jH〉3 jH〉4− jV〉1 jV〉2 jV〉3 jV〉4ð Þ�:
ð1Þ

Consider that photon 1 belongs to Alice, photon 2 belongs to Bob
and photons 3 and 4 belong to Charlie. In order to realize a single-
photon quantum dense coding, one of the four local operations {I, σ1

z ,
σ1

x, iσ1
y } is performed on photons 1 by Alice. Here I is the identity

operator and σj
i are three Pauli operators of the jth photon. Then we

introduce how to realize the operations using optical elements. First
we introduce half-wave plate (HWP), phasemodulator (PM) andQND
parity detector PD [22]. After photon incident on HWP with its major
axis angle θ=π /4 to horizontal direction, the operation σ x is
implemented, that is |H 〉↔ |V〉. And when angle θ=π /8 the Hada-
mard transformation is implemented, that is jH〉 = 1

ffiffi

2
p jH〉 + jV〉ð Þ

and jV〉 = 1
ffiffi

2
p jH〉− jV〉ð Þ. And PM can realize operationσ z on incident

photon, that is |H〉→ |H〉 and |V〉→− |V 〉. When a photon passes
through the PM and then come across the HWP, the operation iσ y is
performed. PD is used to distinguish the even/odd polarization parity

inputs. If Alice performs one of four local operations {I, σ 1
z , σ 1

x, iσ 1
y }

on photon 1, the state of four photons, which is given in Eq. (1),
evolves into the following four states

jψ〉F =
1
2
½ jH〉1 jH〉2 jH〉3 jH〉4 + jH〉1 jH〉2 jV〉3 jV〉4ð Þ

F jV〉1 jV〉2 jH〉3 jH〉4− jV〉1 jV〉2 jV〉3 jV〉4ð Þ�:
ð2Þ

jϕ〉F =
1
2
½ jV〉1 jH〉2 jH〉3 jH〉4 + jV〉1 jH〉2 jV〉3 jV〉4ð Þ

F jH〉1 jV〉2 jH〉3 jH〉4− jH〉1 jV〉2 jV〉3 jV〉4ð Þ�:
ð3Þ

The polarization conventions [23] thatwill be used in this paper are
shown in Fig. 1. The horizontal and vertical polarizations of photon are
presented by |H 〉 and |V〉, respectively, and measurement is made
on the basis of |F〉 and |S〉. PBS oriented in theHVbasis always transmits
H-polarized photons and reflects V-polarized photons. PBS oriented
in the FS basis always transmits F-polarized photons and reflects
S-polarized photons jH〉 = 1

ffiffi

2
p jF〉− jS〉ð Þ, jV〉 = 1

ffiffi

2
p jF〉 + jS〉ð Þ. After

coding on photon 1, Alice sends it to Bob. In order to determine
which operation Alice applied Bob has to need Charlie's helps. The
setup is depicted in Fig. 2. Suppose that four photons 1, 2, 3 and 4 enter
modes A, B, C and D of our cluster state analyzer, respectively. At first,
Charlie performs Hadamard transformations on particles 3 and 4, then
the states of the four particles evolve into

jψ〉F =
1
2
½ jH〉1 jH〉2 jH〉3F jV〉1 jV〉2 jV〉3ð Þ jH〉4

+ jH〉1 jH〉2 jV〉3F jV〉1 jV〉2 jH〉3ð Þ jV〉4�;
ð4Þ

jϕ〉F =
1
2
½ jV〉1 jH〉2 jH〉3F jH〉1 jV〉2 jV〉3ð Þ jH〉4

+ jV〉1 jH〉2 jV〉3F jH〉1 jV〉2 jH〉3ð Þ jV〉4�:
ð5Þ

Charlie sends his photon 4 to pass through a PBS and detects it.
We suppose that photon 4 is in the state of |H〉a. Then the states of
photons 1, 2 and 3 collapse into

jψ〉F =
1
2

jH〉1 jH〉2 jH〉3F jV〉1 jV〉2 jV〉3ð Þ ð6Þ

jϕ〉F =
1
2

jV〉1 jH〉2 jH〉3F jH〉1 jV〉2 jV〉3ð Þ ð7Þ

S

V

F

H

(a)

HV - PBS

(b)

FS - PBS

(c)

Fig. 1. (a) Orientations of the H/V and the F/S polarization basis used in this paper. The
F/S basis is rotated +45∘ with respect to the H/V basis. (b) and (c) show the symbols of
polarizing beam splitters in the H/V and F/S basis.

Fig. 2. The setup to implement single-photon quantum dense coding using cluster states. We keep down PM and withdraw HWP1 to implement the operation σ1
z . The other

operations are similar, we choose the PM or HWP according to the requirement. Four photons enter the analyzer from input ports A, B, C and D. HWP2 and HWP3 perform the
Hadamard transformation. PDAB and PDAC are QND parity detectors. Di i = a; a0; b; b0; c; c0; d; d0ð Þ are photon detectors.
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