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In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal
cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-
photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal
cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients
of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity
close to the unity.

© 2010 Elsevier B.V. All rights reserved.

Quantum entanglement [1] is the cornerstone of exotic phenom-
ena in quantum mechanics. It radically differs from ingredients of
classical physics and plays an important role to demonstrate
fundamental aspects of the theory. Entangled states constitute useful
resources to perform tasks that cannot be realized by classical states
such as superdense code [2], entangled-based quantum cryptography
[3,4], and quantum teleportation [5]. In particular, quantum telepor-
tation provides amechanism to transfer, from a system to another, the
quantum information contained in the state of one or more qubits
using a quantum channel (entangled state) plus a classical channel to
transfer an additional classical information required to reconstruct the
teleported state. Besides being useful for quantum communication via
quantum computers, quantum teleportation is fundamental for
universal quantum computation [6].

Quantum teleportation has been experimentally proved in various
physical contexts, such as in traveling waves [7], optical continuous-
variables [8], nuclear magnetic resonance [9], photons in waveguides
[10], trapped ions [11], etc. Nonetheless, in the important scenario of
microwave cavity QED it remains as a challenge yet. In the theoretical
realm, Davidovich et al. [12] proposed a scheme to teleport an
unknown atomic state between two high-Q cavities initially prepared
in entangled photon number states. An alternative scheme proposed
by Cirac and Parkins [13] employed two additional atomic levels of
one of a correlated pair to teleport atomic states. Other proposals can
also be found in [14–17].

In Ref. [18] Zheng proposed a scheme for approximately and
conditionally teleporting an unknown atomic state in a cavity QED, a

procedure known as “teleportation without Bell-state measurement”.
In it, only one particle of the entangled pair should be detected, which
projects the other particle in a known state and simplifies the
reconstruction of the teleported state. So, the use of a single atomic
detection and an appropriate atom–field interaction allows one to
distinguish a specific Bell-state among four possibilities. From the
experimental point of view, the simplicity of the apparatus is achieved
at the expense of a reduction of the success probability. After Ref. [18]
various schemes of teleportation without Bell-state measurement
were proposed [19–21]. In Ref. [19] a one-photon process described
by the Jaynes–Cumming model was used to teleport entangled states
from a bimodal cavity to another. In [20] the schemewas extended for
teleportation of GHZ-states.

Here we propose a scheme using a two-photon process to teleport
an entangled bimodal cavity-field state consisting of a zero- and two-
photon from a cavity to another without Bell-state measurement. It is
worth mentioning that the two-photon process has been demon-
strated in [22] for amicrowave QED cavity and offers some advantages
in comparison with the one-photon process, as the reduction of
interaction times due to the increasing of the atom–field coupling
strength and the lower decoherence induced by stray fields [23]. In
addition, two-photon process can be easily obtained with Rydberg
atoms with principal quantum number nN89, which can be state-
sensitively detected using tunneling field ionization with quantum
efficiencies above 80% and an ionization efficiency above 98% [24]. To
describe the two-photon process we will use the two-photon Jaynes–
Cummings model in the full microscopical Hamiltonian approach
(FMHA) as explained in Ref. [25]. Different from the effective
Hamiltonian approach, the FMHA is also valid for small average
photon number. In Ref. [26] the reader will find a more detailed
discussion about the validity of the effective Hamiltonian approach
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and its connection with the FMHA, concerned with quantum
teleportation of atomic states.

We will consider a three-level atom that interacts with a single
mode of a cavity field. In the absence of a driven field acting upon the
atom, the model describing the atom–field interaction is given by the
FMHA. In the interaction picture the Hamiltonian reads [25]

HFMHA = ħg1 a je〉〈f je−iδt + a† j f 〉〈e jeiδt
� �

+ ħg2 a j f 〉〈g jeiδt + a† jg〉〈f je−iδt
� �

;

ð1Þ

where g1 and g2 stand for the one-photon coupling constant with
respect to the transitions |e〉↔ | f 〉 and | f 〉↔ |g〉, respectively. The
detuning δ is given by

δ = Ω− ωe−ωf

� �
= ωf−ωg

� �
−Ω; ð2Þ

where Ω is the cavity-field frequency and ωe, ωf, and ωg are the
frequencies associated with the atomic levels |e〉, |f〉, and |g〉,
respectively. In what follows we present a brief review of our work
in [26].

The state that describes the combined atom–field system is
written as

jψ tð Þ〉 = ∑
n

Ce;n tð Þje;n〉 + Cf ;n tð Þj f ;n〉 + Cg;n tð Þ jg;n〉
h i

; ð3Þ

where the |k,n〉, with k=e, f,g, indicate the atom in the state |k〉 and
the field in the Fock state |n〉. The coefficients Ck,n(t) stand for the
corresponding probability amplitudes.

The insertion of Eqs. (1) and (3) in the time dependent
Schrödinger equation furnishes the coupled first-order differential
equations for the probability amplitudes

dCe;n tð Þ
dt

= −ig1Cf ;n+1 tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1

p
e−iδt

;

dCf ;n+1 tð Þ
dt

= −ig1Ce;n tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1

p
eiδt−ig2Cg;n+2 tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 2

p
eiδt ;

dCg;n+2 tð Þ
dt

= −ig2Cf ;n+1 tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 2

p
e−iδt

:

ð4Þ

As usually, we consider the entire atom–field system as decoupled
at the initial time t=0,

Ce;n 0ð Þ = CeCn 0ð Þ;
Cb;n+1 0ð Þ = Cf Cn+1 0ð Þ;
Cc;n+2 0ð Þ = CgCn+2 0ð Þ;

ð5Þ

where the Cn(0) stand for the amplitudes of the arbitrary initial field
state and the Ca are atomic amplitudes of the (normalized) initial
atomic state

jχ〉 = Ce je〉 + Cf j f 〉 + Cg jg〉: ð6Þ

From the solution of these coupled differential equations with the
initial conditions in Eq. (5) we get the time dependent coefficients as

Ce;n tð Þ = g21 n + 1ð Þ
Λnα

2
n

γn tð Þ + 1

" #
CeCn−i

g1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1

p

Λn
sin Λntð Þe−iδt2Cf Cn+1

+
g1g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1ð Þ n + 2ð Þp
Λnα

2
n

γn tð Þ
" #

CgCn + 2;

ð7Þ

Cf ;n+1 tð Þ = −i
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1

p

Λn
sin Λntð Þeiδt2CeCn

+ cos Λntð Þ− iδ
2Λn

sin Λntð Þ
� �

ei
δt
2Cf Cn+1

−i
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 2

p

Λn
sin Λntð Þeiδt2CgCn+2;

ð8Þ

Cg;n+2 tð Þ = g1g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1ð Þ n + 2ð Þp
Λnα

2
n

γn tð ÞCeCn

−i
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 2

p

Λn
sin Λntð Þe−iδt2Cf Cn+1

+
g22 n + 2ð Þ

Λnα
2
n

γn tð Þ + 1

" #
CgCn+2;

ð9Þ

where

γn tð Þ = Λncos Λntð Þ + i
δ
2
sin Λntð Þ−Λne

iδt2

� �
e−iδt2 ; ð10Þ

Λn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2

4
+ α2

n

s
; ð11Þ

αn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 n + 1ð Þ + g22 n + 2ð Þ

q
; ð12Þ

Λn being the Rabi frequency. The substitutions n→n−1 in Eq. (8) and
n→n−2 in Eq. (9) allow one to obtain the Cf,n(t) and Cg,n(t),
respectively.

Next, we first consider an entangled state of zero- and two-
photons previously prepared in modes “3” and “4” of the cavity C2, as
follows

jϕ 0ð Þ〉34 = α j0;2〉34 + β j2;0〉34; ð13Þ

where α and β are unknown coefficients, with |α|2+|β|2=1. For
details see Ref. [27], where we have recently shown how to generate
the EPR and W entangled states of zero- and two-photons. The
nonlocal channel is constructed by two three-level atoms (designed
by subindex a and b) in a ladder configuration (Fig. 1) and the modes
“1” and “2” of the cavity C1. This nonlocal channel is prepared with the
atoms previously prepared in their excited states (|e〉a,b) and the
cavity-field modes in the vacuum state (|0,0〉12). Then, the atom a is
sent to interact only with the mode 1 and soon after the atom b is led

Ω

Ω

δ

|e

|f

|g

(ωe − ωf)

(ωf − ωg)

Fig. 1. Schematic diagram of the three-level atom interacting with a single mode of a
cavity field.
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