
Scheme to generate three-mode continuous-variable entanglement in cavity
quantum electrodynamics

Qing-Xia Mu ⁎, Yong-Hong Ma, Ling Zhou
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 14 April 2010
Received in revised form 20 September 2010
Accepted 9 October 2010

Keywords:
Output entanglement
Optical cavity
Raman transitions

We propose a theoretical method of generating a three-mode continuous-variable entanglement in an optical
cavity with an atomic cloud. The scheme uses Raman transitions between stable atomic ground states and
under the input–output theory a three-mode entangled light of the output fields can be produced. The
characters of the tripartite entanglement, the degree of the quadrature-phase amplitude correlations among
the three modes are discussed by applying a sufficient inseparability criterion for multipartite continuous-
variable entanglement, which was proposed by van Loock and Furusawa. The dependences of the correlation
on the effective coupling constants are theoretically analyzed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Quantum entanglement has attracted great interest as it is
considered to be the most important resource for future quantum
information and quantum computation. In particular, continuous-
variable (CV) entanglement is a key element in Einstein–Podolsky–
Rose paradox [1] and has been widely researched due to its
unconditionalness for the implementation of many quantum informa-
tion processes, such as unconditional quantum teleportation [2],
quantum dense coding [3], entanglement swapping [4], and quantum
telecloning [5]. Recently, it seems that people are puttingmore effort on
the generation of CV entanglement, which mainly involves parametric
amplification or oscillation process [6], the Kerr effect in optical fibers
[7], and atomic ensembles or a single atomwith cavity QED [8–11]. For
instance, Guzmán [8] proposed a method to implement unitary single
mode and two-mode field squeezing from an atomic cloud in an optical
cavity. We also present a scheme to generate output squeezing and
entanglement of two cavity modes from a single atom [11]. However,
the above work is confined to the bipartite systems.

It is shown that multipartite CV entanglement has become the key
ingredient for advanced multipartite quantum teleportation networks
[12], controlled dense coding [13], and quantum telecloning [14].
Therefore,much attentionhas beenpaid to the production ofmultipartite
(especially tripartite) entanglement, such as combining squeezed states
onbeamsplitters [13,15], or via the interaction ofmultiple input beams in
nonlinear optical material with parametric process [16–19]. So far a few
proposals have been demonstrated on the generation of bright tripartite

entanglement light via atom–cavity system[20,21]. Lüet al. [20] proposed
a scheme for achieving fully tripartite CV entanglement in a tripartite
correlated emission laser consisting of the four-level Y-type atomic
ensemble and a triply resonant cavity. Li et al. [21] studied theoretically
the steady-state tripartite entanglement in a three-mode quantum-beat
laser that operates well above threshold. On the other hand, the
generation of entanglement among three bright beams of light has
been demonstrated experimentally [22].

In this research, we extend the two-mode cavity system [8] to the
three-mode case and explore tripartite continuous-variable entan-
glement, consisting of an optical cavity with an atomic cloud. The
interaction of three cavity fields is formed by beating them in three
distinct Raman transitions between the atomic ground states. Based
on the standard criteria proposed by van Loock and Furusawa, we
show that genuinely tripartite entanglement with distinct frequencies
can be produced at the output. The dependences of quantum
correlations of the amplitude and phase quadratures among the
three cavity modes on the effective coupling constants are also
discussed.

2. The model and calculations

The system consists of N identical four-level atoms, which are
placed in a three-mode optical cavity. The atomic ensemble can be
sodium atoms in a vapour cell, where the lower states are two
hyperfine levels of |F=1〉 and |F=2 〉 of 32S1/2, and the upper states
are |F′=1 〉 and |F′=2〉 of 32P1/2, respectively. The energy level
configuration of each atom is shown in Fig. 1. The levels |0 〉 and |1 〉 are
stable with a long lifetime. The energy of the level |0〉 is taken to be
zero as the reference point. The lower lying level |1 〉 and the upper
levels |2 〉 and |3 〉 have the energy ω1, ω2 and ω3 (ℏ=1), respectively.
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We assume the atoms are initially prepared in their ground states |0 〉.
The atomic transition |1〉↔ |3〉 is driven by a classical field of
frequency ωL1 with detuning Δ, while two classical fields of
frequencies ωL2 and ωL3 are applied to the atomic transition |0〉↔ |2〉
with the detunings being ±Δ′, respectively. Meanwhile, three
nondegenerate modes ν1, ν2 and ν3 of the cavity are coupled with
the atomic transitions |0 〉↔ |3 〉 and |1 〉↔ |2 〉 with the detunings
Δ−δ and ±Δ′−δ′, respectively. Then the Hamiltonian for the
system can be written as

H = H0 + Hint ; ð1Þ

with

H0 = ∑
N

k=1
∑
3

i=0
ωi j i〉k〈i〉 + ∑

3

j=1
νja

†
j aj; ð2Þ

and

Hint = ∑
N

k=1
½g1a1 j3〉k〈0 j + g2a2 j2〉k〈1 j + g3a3 j2〉k〈1 j

+ Ω1e
−i ωL1

t−ϕ1

� �
j3〉k〈1 j + Ω2e

−i ωL2
t−ϕ2

� �
j2〉k〈0 j

+ Ω3e
−i ωL3

t−ϕ3

� �
j2〉k〈0 j� + H:c:

ð3Þ

Here aj (aj
†) (j=1, 2, 3) are the annihilation (creation) operators of

the cavity modes with the corresponding coupling constants gj (j=1,
2, 3), respectively. Ωj are the Rabi frequencies of the classical fields
with the relative phases ϕj. We now give a description of the
mechanism for pumping light. Firstly, the classical field Ω2 pumps the
atom from the ground state |0 〉 to the excited state |2〉, and the photon
a2 was emitted from the transition |2 〉←→ |1〉 under the action of
cavity mode 2; and then the classical field Ω1 pumps the atom from
the state |1〉 to the excited state |3〉, and the photon of cavity mode 1
was emitted when the atomic transition |3 〉↔ |0 〉 happens. In this
interaction process, the effective Hamiltonian can be written as a1

†a2
† .

Then, the classical field Ω3 pumps the atom from the ground state |0〉
to the excited state |2 〉, and under the action of cavity mode 3, the
photon a3 was emitted due to the transition |2 〉←→ |1 〉; and then like
before, the classical field Ω1 pumps the atom from the state |1〉 to
the excited state |3 〉, and the photon a1 was emitted from transition
|3 〉←→ |0 〉 under the cavity mode 1. The effective Hamiltonian in
this process can be written as a1

†a3
† . In addition, while the cavity

mode 2 leads to the emission of photon a2 from the transition |2 〉 to
|1 〉, the atom can also be excited to the state |2 〉 by absorbing
photon a3. In this interaction process, the effective Hamiltonian can
be written as a2

†a3.
We assume, without loss of generality, that all the cavity modes

coupling frequencies gj and the laser Rabi frequencies Ωj are real
numbers. By taking ϕ1 = ϕ3 = −ϕ2 = − π

2, the associated Hamilto-
nian in the interaction picture reads

HI = ∑
N

k=1
½g1a1e−i Δ−δð Þt j3〉k〈0 j + g2a2e

−i Δ′−δ′
� �

t j2〉k〈1 j

+ g3a3e
i Δ′ + δ′
� �

t j2〉k〈1 j−iΩ1e
−iΔt j3〉k〈1 j

+ iΩ2e
−iΔ′t j2〉k〈0 j−iΩ3e

iΔ′t j2〉k〈0 j� + H:c:

ð4Þ

We consider the dispersive detunings Δ,Δ′ are sufficiently large,
i.e., {|Δ|, |Δ′|}≫ {gj,Ωj, |δ|, |δ′|}. Under the large detuning condition, the
population of atoms will not change. If the atoms are initially not
populated in the upper states |2〉 and |3 〉 they will not populate in
these states during the interaction. Then, we eliminate adiabatically
the levels |2 〉 and |3〉 and obtain the effective Hamiltonian [23]

Heff = −δ +
g21
Δ

N
2
−JZ

� �" #
a†1a1 + −δ′ +

g22
Δ′

N
2

+ JZ

� �" #
a†2a2

+ −δ′− g23
Δ′

N
2

+ JZ

� �" #
a†3a3 +

Ω2
1

Δ
N
2

+ JZ

� �

+
Ω2

2

Δ′
−Ω2

3

Δ′

 !
N
2
−JZ

� �
+ iλ1a1 + iλ2a

†
2 + iλ3a

†
3

� � ffiffiffiffi
N

p
Jþ + H:c:;

ð5Þ

where

Jz =
1
2
∑
N

k=1
j1〉k〈1 j− j0〉k〈0 jð Þ; Jþ = ∑

N

k=1
j1〉k〈0 jð Þ; ð6Þ

are the collective atomic spin operators. λ1=Ω1g1/Δ, λ2=Ω2g2/Δ′
and λ3=Ω3g3/Δ′ are the effective coupling constants of the atom
ensemble to the cavity modes.

In the Holstein–Primakoff representation [24], the collective
atomic operators may be transformed into harmonic-oscillator
annihilation and creation operators b and b† of a single bosonic
mode via Jþ = b†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−b†b

p
and Jz = b†b− N

2. We consider that only the
low-lying collective excitations in the atoms, that is to say the mean
number of atoms transferred to the states |1〉 is much smaller than the
total number of atoms, i.e., 〈b†b〉≪N. Then the collective atomic
operators can be approximated as Jþ =

ffiffiffiffi
N

p
b†, and Jz=−N/2 [25,26].

Substituting these expressions into Hamiltonian (5) and choosing

δ = Ng21
Δ1

, δ′=0, we find the effective Hamiltonian Heff can be reduced

to the form

Heff = iλ1a1 + iλ2a
†
2 + iλ3a

†
3

� � ffiffiffiffi
N

p
b† + H:c; ð7Þ

where the constant energy terms have been omitted. In the first term
of this effective Hamiltonian, the bosonic mode of the collective atoms
is coupled to the cavity mode a1 through the linear-mixing process
and via this process the possibility of exchanging the quantum
information between bosonic mode b and the cavity mode a1.
Meanwhile the bosonic mode b is also entangled with the cavity
mode a2 (a3) via the nondegenerate parametric interaction in the
second (third) term, which can lead to the generation of continuous-
variable entanglement between the bosonic mode b and cavity mode
a2 (a3). Thus, mediated by the bosonic mode of the collective atoms,
the entanglement of the three cavity modes can be generated inside

Fig. 1. Level scheme of the atomic system. The atomic transitions |0 〉↔ |3 〉, |1〉↔ |2〉
are coupled with the three nondegenerate modes ν1, ν2 and ν3 of the cavity, while the
atomic transitions |1〉↔ |3 〉 and |0 〉↔ |2 〉 are induced by three classical fields with
angular frequencies ω1, ω2 and ω3.
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